
Z-Way Essentials

The Z-Wave.Me Team

October 27, 2017

© 2017 Prof.- Ing. Christian Paetz, 08064 Zwickau

1. Edition 2017

ISBN: XXX-XXXXXXXX

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and

certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below.

The Z-Wave.Me Team, info@z-wave.me

Contents

1 Introduction 8

1.1 Structure of the book . 8

1.2 History of Z-Way . 8

1.3 Status of the document . 8

2 Z-Way
™

enabled Hardware 10

2.1 RaZberry shield board for Raspberry Pi . 10

2.1.1 Compatibility . 10

2.1.2 Pinout and options on board . 10

2.1.3 Boot-Up Self-Test . 11

2.1.4 LEDs during Operation . 12

2.1.5 Frequencies . 12

2.1.6 Certi�cations . 12

2.2 The USB Stick UZB . 13

2.2.1 Boot-Up Self-Test . 14

2.2.2 Frequencies . 14

2.2.3 Certi�cations . 15

2.3 Other hardware platforms . 15

3 Preparation and Ways to Access the System 16

3.1 Installation on Raspberry Pi . 16

3.2 Installation on other platforms using UZB . 16

3.2.1 Unix-based Platforms . 16

3.2.2 Windows . 17

3.3 Local and Remote Access . 17

3.4 Security and Privacy . 20

4 The Web Browser User Interface 23

4.1 Z-Way Smart Home InterfaceDaily Usage . 23

4.1.1 Standard Element View . 23

4.1.2 News feed . 27

4.2 The Con�guration Menu . 29

4.2.1 Apps . 29

4.2.2 Devices . 31

4.2.3 Customize . 38

4.2.4 My Settings . 40

4.2.5 Management . 40

4.3 The Management Interface . 43

4.3.1 User Management . 43

4.3.2 Remote Access Management . 43

4.3.3 Time Zone . 44

4.3.4 Backup & Restore . 44

4.3.5 Factory default . 46

4.3.6 Firmware Update . 46

4.3.7 App Store Access . 47

4.3.8 Report Problem . 47

4.3.9 Info . 47

5 Mobile Apps 49

5.1 Standard mobile web browsers . 49

5.2 Native HTML based apps . 49

5.3 Pure Native Apps . 49

5.4 Third-Party Apps . 49

5.4.1 Imperihome . 49

3

Contents

5.4.2 Fibaro . 52

5.4.3 openHAB . 52

5.5 Shortcuts for Android and Integration into Third party software . 53

6 The App System: making it intelligent 55

6.1 A simple Apps as starter - ’Local Weather’ . 55

6.2 Smart Home Logic . 56

6.2.1 Scene . 56

6.2.2 If -> Then . 57

6.2.3 Logical Rule: If->Then on steroids . 59

6.2.4 Tips and Tricks . 59

6.3 The big apps . 60

6.3.1 Leakage Protection . 60

6.3.2 Fire Protection . 61

6.3.3 Burglar Alarm System . 63

6.3.4 Climate Control . 64

6.4 Out-of-band noti�cations . 65

6.4.1 Push Noti�cations . 65

6.4.2 Email ME . 65

6.4.3 Other noti�ers . 66

6.5 Useful tools and utilities . 66

6.5.1 Apple HomeKit . 66

6.5.2 Intchart.com . 67

6.5.3 Astronomy App . 67

6.5.4 Alexa Integration . 67

6.5.5 Philips Hue Integration . 67

6.6 For Developers . 68

7 The Z-Wave Expert User Interface 70

7.1 Home Screen . 70

7.2 Control . 70

7.2.1 Switch . 70

7.2.2 Sensors . 72

7.2.3 Meters . 72

7.2.4 Thermostats . 73

7.2.5 Locks . 73

7.2.6 Noti�cations . 73

7.3 Device . 73

7.3.1 Status . 73

7.3.2 Type Info . 75

7.3.3 Battery . 75

7.3.4 Active Associations . 75

7.4 Con�guration . 77

7.4.1 Interview . 77

7.4.2 Con�guration . 77

7.4.3 Association . 78

7.4.4 Link Health . 80

7.4.5 Expert Commands . 80

7.4.6 Firmware Update . 80

7.5 Network . 81

7.5.1 Control . 81

7.5.2 Neighbors . 86

7.5.3 Reorganization . 86

7.5.4 Network Map . 87

7.5.5 Timing Info . 87

7.5.6 Link Status . 89

7.5.7 Controller Info . 89

7.6 Analytics . 91

7.7 Setup . 91

7.8 Job Queue . 91

4

Contents

8 Troubleshoot the Z-Wave Network 92

8.1 Radio Layer . 92

8.2 Network Layer - Devices . 92

8.3 Network Layer - Weak or Wrong Routes . 96

8.4 Application Layer Settings . 98

8.4.1 Polling . 98

8.4.2 Dead Associations . 98

8.4.3 Wrong Wakeup Settings . 98

8.5 Summary . 99

9 Extending the systems beyond Z-Wave 101

9.1 IP-Cameras . 101

9.1.1 How to �nd out if a camera is supported by Z-Way™ ? . 101

9.1.2 How to prepare for integration? . 101

9.1.3 How to �nd the IP address of the camera? . 101

9.1.4 How to integrate the camera into Z-Way™ ? . 101

9.1.5 How to support a camera not on the list yet? . 103

9.2 433 MHz devices . 103

9.2.1 Introduction . 103

9.2.2 433 MHz Gateway . 104

9.2.3 How to setup the 433 MHz Gateway . 104

9.3 EnOcean devices . 109

9.4 Other IP/Internet-based services . 111

10 Customize your system 112

10.1 Skins . 112

10.1.1 Step 1 - Do you own Skin . 112

10.1.2 Step 2 - Do your own Images . 112

10.1.3 Step 3 - Test the new Skin . 113

10.1.4 Step 4 - Change colors, fonts, shapes – almost . 113

10.1.5 Step 5 - Going into the SASS world . 114

10.1.6 Step 6 - Changing SASS . 114

10.1.7 Step 7 - Create the �nal Skin for friends, family and the public 114

10.1.8 Step 8 - Distribute your Skin . 115

10.1.9 Step 9 - Rewind in case something goes wrong . 115

10.2 Icon Sets . 116

10.2.1 Create Your own Icons . 116

10.2.2 Create an Icon Pack . 116

10.2.3 Upload your Icon Set . 117

10.3 How to translate the Z-Way™ to your language . 117

10.3.1 Smart-Home User Interface . 117

10.3.2 Expert User Interface . 118

10.3.3 Backend Code . 118

10.3.4 Submission of your Language Pack . 118

11 Develop Code for Z-Way
™

119

11.1 Z-Way™ software structure overview . 119

11.2 Z-Way™ APIs Quick Reference . 120

11.2.1 Z-Wave Device API . 120

11.2.2 JavaScript API (JS API) . 121

11.2.3 Virtual Device API . 121

11.2.4 Comparison . 122

11.3 The Z-Wave Device (JSON) API in detail . 123

11.3.1 The data model . 123

11.3.2 Timing behavior of Z-Wave data . 123

11.3.3 Executing Commands . 125

11.4 C-Library API and a general view on the Z-Way™ �le structure . 130

11.4.1 Files in the /zway folder . 130

11.4.2 The use of the C-Library . 135

5

Contents

12 The JavaScript Engine 138

12.1 The JavaScript Core Interpreter and the integration of the Z-Wave function 138

12.2 Z-Way™ extensions to the JavaScript Core . 139

12.2.1 HTTP Access . 139

12.2.2 XML parser . 140

12.2.3 Cryptographic functions . 142

12.2.4 Sockets functions . 143

12.2.5 WebSockets functions . 144

12.2.6 Other JavaScript Extensions . 145

12.2.7 Debugging JavaScript code . 146

12.3 The virtual device concept (vDev) . 147

12.3.1 Names and Ids . 147

12.3.2 Device Type . 147

12.3.3 Access to Virtual Devices . 147

12.3.4 Virtual Device Usage / Commands . 148

12.3.5 Virtual Device Usage / Values . 148

12.3.6 How to create your own virtual devices . 148

12.3.7 Binding to metric changes . 150

12.4 The event bus . 150

12.4.1 Emitting events . 150

12.4.2 Catching (binding to) events . 150

12.4.3 Noti�cation and Severity . 150

12.5 Modules (for users called ’Apps’) . 151

12.5.1 Module.json . 151

12.5.2 index.js . 151

12.5.3 Available Core Modules . 152

13 Special topics for Developers 154

13.1 Authentication . 154

13.2 How to write own Apps for Z-Way™ . 155

13.2.1 module.js . 155

13.2.2 Schema . 155

13.2.3 The �le index.js . 156

13.3 Write you own Device Description Files . 156

13.4 Extending EnOcean . 157

A CE Declarations 159

B User Interface Fundamentals - Slides 161

C Z-Way
™

Data Model Reference 163

C.1 Data . 163

C.2 JS object zway . 163

C.3 controller . 163

C.4 Devices . 164

C.5 Device . 164

C.6 Instances . 165

C.7 CommandClass . 166

D Command Class Reference 167

D.1 Command Class Basic (0x20/32) . 168

D.2 Command Class Wakeup (0x84/132) . 168

D.3 Command Class NoOperation (0x00/0) . 169

D.4 Command Class Battery (0x80/128) . 169

D.5 Command Class ManufacturerSpeci�c (0x72/114) . 170

D.6 Command Class Proprietary (0x88/136) . 170

D.7 Command Class Con�guration (0x70/112) . 171

D.8 Command Class SensorBinary (0x30/48) . 172

D.9 Command Class Association (0x85/133) . 172

D.10 Command Class Meter (0x32/50) . 173

D.11 Command Class Meter Pulse (0x35/53) . 174

6

Contents

D.12 Command Class SensorMultilevel (0x31/49) . 174

D.13 Command Class Sensor Con�guration (0x9E/158) . 175

D.14 Command Class SwitchAll (0x27/39) . 175

D.15 Command Class SwitchBinary (0x25/37) . 176

D.16 Command Class SwitchMultilevel (0x26/38) . 177

D.17 Command Class MultiChannelAssociation (0x8E/142) . 178

D.18 Command Class MultiChannel (0x60/96) . 179

D.19 Command Class Node Naming (0x77/119) . 180

D.20 Command Class Thermostat SetPoint (0x43/67) . 182

D.21 Command Class Thermostat Mode (0x40/64) . 182

D.22 Command Class Thermostat Fan Mode (0x44/68) . 183

D.23 Command Class Thermostat Fan State (0x45/69) . 183

D.24 Command Class Thermostat Operating State (0x42/66) . 184

D.25 Command Class Alarm Sensor (0x9C/156) . 184

D.26 Command Class Door Lock (0x62/98) . 185

D.27 Command Class Door Lock Logging (0x4C/76) . 186

D.28 Command Class User Code (0x63/99) . 187

D.29 Command Class Time (0x8A/138) . 188

D.30 Command Class Time Parameters (0x8B/139) . 189

D.31 Command Class Clock (0x81/129) . 189

D.32 Command Class Scene Activation (0x2B/43) . 190

D.33 Command Class Scene Controller Conf (0x2D/45) . 190

D.34 Command Class Scene Actuator Conf (0x2C/44) . 191

D.35 Command Class Indicator (0x87/135) . 191

D.36 Command Class Protection (0x75/117) . 192

D.37 Command Class Schedule Entry Lock (0x4E/78) . 193

D.38 Command Class Climate Control Schedule (0x46/70) . 195

D.39 Command Class MeterTableMonitor (0x3D/61) . 196

D.40 Command Class Alarm (0x71/113) . 197

D.41 Command Class PowerLevel (0x73/115) . 198

D.42 Command Class Z-Wave Plus Info (0x5E/94) . 199

D.43 Command Class Firmware Update (0x7A/122) . 200

D.44 Command Class Association Group Information (0x59/89) . 201

D.45 Command Class SwitchColor (0x33/51) . 202

D.46 Command Class BarrierOperator (0x66/102) . 203

D.47 Command Class SimpleAVControl (0x94/148) . 204

D.48 Command Class Security (0x98/152) . 204

D.49 Command Class CRC16 (0x56/86) . 205

D.50 Command Class MultiCmd (0x8F/143) . 205

D.51 Command Class Supervision (0x6C/108) . 205

D.52 Command Class Application Status (0x22/34) . 205

D.53 Command Class Version (0x86/134) . 206

D.54 Command Class DeviceResetLocally (0x5A/90) . 206

D.55 Command Class Central Scene (0x5B/91) . 206

E Function Class Reference 207

F List of supported EnOcean devices 222

F.1 NodOn . 222

F.2 Thermokon . 222

F.3 Hubbel . 222

F.4 AWAG . 222

F.5 Hoppe . 222

F.6 Schneider Elektrik . 222

F.7 PEHA . 222

F.8 Eltako . 223

F.9 EnOcean GmbH . 223

7

1 Introduction

1.1 Structure of the book

This book describes all aspects of the Z-Way™ controller software solution. This include both the Z-Way™ software

solution and the hardware Z-Way™ runs on. The book is structured as follows:

Start Use Extend Manage Customize Contribute

The start section provides the necessary information to �re up a Z-Way™ -based controller. This is followed by the

explanation of the daily user interface — called Z-Way Smart Home Interface— both for standard web browser and

as native app for mobile devices. The next section cover the options to extend the system by supporting more radio

technologies, third-party solutions, and other applications.

The next chapter explains tools and processes to manage and troubleshootZ-Wave networks, followed by explanations

of how to customize the user interface to your speci�c needs.

The �nal section of the book is dedicated to developers and programmers who can, and are willing to, contribute to

the project and/or design their own solutions based on Z-Way™ .

The need for technical understanding and knowledge increases from chapter to chapter.

Please note that this book will not provide any basic knowledge about the Z-Wave technology as such. Please refer

to the book ’Z-Wave Essentials’ as shown in �gure 1.1 for an comprehensive explanation of the Z-Wave technology.

The book is available at amazon.com and many other book sellers. The ISBN number is 978-1545394640.

1.2 History of Z-Way

The history of Z-Way™ dates back into the year of 2008. Two developers had done their own privateZ-Wave controller

written in Python. When they got engaged they realized that they should combine their solutions and create a second

generation Z-Wave controller. The work on this merger started in May 2009 and the result - a complete Z-Wave
controller written in python was certi�ed by the Z-Wave Alliance in March 2011.

http://products.z-wavealliance.org/products/85
To allow porting of this code to small memory platforms the whole software was rewritten in C and Javascript was

used as scripting engine. The same time the code was updated according the new Z-Wave Plus certi�cation process

and �nally certi�ed as �rst Z-Wave Plus compatible controller in Fall of 2014.

http://products.z-wavealliance.org/products/1150
After many improvements the year of 2017 brought the next major change. As �rst software again Z-Way™ in Version

3.0 supports the new innovative security architecture of Z-Wave called S2.

1.3 Status of the document

The manual is based on Z-Way™ software release >= 2.3.6. Some functions marked in blue text text require Z-Way™
v3.0.0 rc9 and up.

8

http://products.z-wavealliance.org/products/85
http://products.z-wavealliance.org/products/1150

1 Introduction

Figure 1.1: Z-Wave Essentials

9

2 Z-Way
™

enabled Hardware

Z-Way™ is a complete software solution that is ported on various hardware. In order to run it on a certain hardware

platform, the following requirements have to be met:

1. There must be a binary Z-Way™ distribution available for this platform. At

http://razberry.wave.me/z-way-server

you will �nd the most recent releases of Z-Way™ binary distributions for the various platforms supported:

a) Dune HD: ARM Linux

b) Alix-x86: Intel CPU 32 Bit Linux

c) Contactless

d) Debian: Intel CPU 64 Bit Linux Debian distribution

e) Popp: For Popp Hub, Mediatek CPU, OpenWRT

f) Raspberry Pi: for the famous Raspberry Pi, ARM based

g) Ubuntu: Intel CPU 64 Bit Linux Ubuntu distribution

h) Windows: For Windows Operating System

Other platforms may be supported as well by one of these binary distributions.

2. Z-Wave transceiver connected to the platform containing a Z-Way™ license. Currently, the ’RaZberry Shield’

always comes with an internal license enabled, while the USB Stick called UZB needs an additional license

applied. Z-Way™ may also run on platforms with embedded Z-Wave transceivers (such as Popp HUB, Dune

HD set-top box), but this requires special arrangement with the manufacturer. Please refer to the section 2.3 for

more information.

Please note that Z-Way™ will start on a certain platform without having a Z-Wave transceiver or a licensing key.

However, in this case is no support for Z-Wave. Still, this may be a good starting point to test the software free of

charge. Please refer to the section 6 for possible applications usable without having Z-Wave enabled.

Z-Wave.Me currents support two basic hardware platforms with Z-Way™ licensing:

1. The RaZberry shield board for Raspberry Pi and compatible platforms

2. The USB Stick ’UZB’ for PCs, set-top boxes, NAS, etc.

2.1 RaZberry shield board for Raspberry Pi

2.1.1 Compatibility

The RaZberry shield consists of a single PCBA with a connector to the standard GPIO pin header connector of the

Raspberry Pi minicomputer. This 25-pin header connector is available on all contemporary Raspberry Pi versions, such

as:

• Version A

• Version B

• Version B+

• Version 2B

• Zero

• Version 3

Even if your Raspberry Pi version is not on the list above, there is a very high chance that the shield board will work

as long as your Pi has the 25-pin GPIO connector. You will �nd more information about the pinout of this 25-pin

connector on various websites
1
.

You can use other pins of the connector for other purposes as long as they do not physically con�ict with the board.

2.1.2 Pinout and options on board

The RaZberry board use only four pins of this header connector:

• Gnd

• VCC (3.3V)

• Serial TX

1
e.g. http://www.raspberry-pi-geek.de/Magazin/2015/05/Raspberry-Pi-und-Arduino-via-UART-koppeln

10

http://razberry.wave.me/z-way-server

2 Z-Way™ enabled Hardware

Figure 2.1: RazBerry on top of a Raspberry Pi

Figure 2.2: Components on RaZberry Hardware

• Serial RX

Figure 2.1 shows how the board connects to the 25-pin header on a Raspberry Pi 2

The board itself o�ers a few connection options as shown in Figure 2.2:

1. Raspberry Pi Connector, used GPIO pins 1-10

2. Second open connector, identical to (1)

3. Reset button

4. Open hole for a PigTail antenna. You need to break o� the PCBA antenna or unsolder resistor S1 to make this

work.

5. Pads to solder a uFL connector for external antenna. See

https://www.adafruit.com/products/1661

for component details. You need to break o� the PCBA antenna to make this work.

6. Two LEDs for status information

The two LEDs are used to indicate the success of the boot-up self-testing and as status indicators during normal

operation.

2.1.3 Boot-Up Self-Test

When powered up, the two LEDs light up, indicating that the self-testing has started. After about two seconds, they

are supposed to go o� indicating that that self-testing has been passed successfully. If they remain lit, this is a clear

indication that the self-test failed or the device is not booting up. You will need to replace the hardware in such a case.

11

https://www.adafruit.com/products/1661

2 Z-Way™ enabled Hardware

Figure 2.3: Frequency Change Option in Z-Wave Expert User Interface

2.1.4 LEDs during Operation

During normal operation, the two LEDs remain turned o� except:

• Green LED will light up when data is transmitted.

• Red LED will light up when the Z-Wave transceiver is either in Inclusion or in Exclusion mode. Please note

that these are special modes of the transceiver that block normal data communication with other nodes in the

network.

2.1.5 Frequencies

The RaZberry shield itself can be tuned into every frequency used by Z-Wave. However, to protect the transceiver

and Z-Wave from high energy emissions on nearby frequencies (primarily 4G/LTE cellular radios using the 852 MHz

frequency band), an external antenna �lter is used. This limits the frequency changes to countries that share the same

antenna �lter. Currently, there are three antenna �lter versions identi�ed by their SKU codes.

• SKU: ZMEEUZB2 (865. . . 869 MHz):

– Europe (EU)[default]

– India (IN)

– Russia (RU)

– PR China (CN)

– RSA (EU)

– Middle East(EU)

• SKU: ZMEUUZB2 (908 ... 917 MHz):

– All the Americas except Brazil and Peru (US) [default]

– Israel (ISL)

• SKU: ZMEAUZB2 (919 ... 921 MHz):

– Australia/New Zealand/Brazil/Peru/Malaysia (ANZ) [default]

– Hongkong (HK)

– Japan/Taiwan (JP)

– Korea (KR)

There are two options to change the RaZberry operating frequency:

1. If you use Z-Wave Expert User Interface , just choose the frontend on Network Management as shown in

the �gure 2.3. For more information about this Z-Wave Expert User Interface , please refer to chapter 7.

2. There is a shell script available at

http://www.z-wave.me/fileadmin/download/changezwf.sh

Just execute the script with

changezwf.sh [COM Port] [US|EU|ANZ|. . .]

2.1.6 Certifications

RaZberry is certi�ed for use in di�erent countries.

CE / Europe

RaZberry complies with the new Radio Equipment Directive of the European Union in general and the EN 300 220

version 3.1.1 in particular. Full CE declaration can be found in Annex A. The device also complies with the European

ROHs and REACH regulations.

12

http://www.z-wave.me/fileadmin/download/changezwf.sh

2 Z-Way™ enabled Hardware

Figure 2.4: USB Stick UZB

FCC / North America

The RaZberry shield was successfully tested for FCC. The FCC identi�er is

2AAYUZMEURAZ.

Z-Wave Plus

The RaZberry shield is a certi�ed hardware platform and a complete solution according to Z-Wave Plus. Please refer

to the certi�cation database

http://products.z-wavealliance.org
for more details.

2.2 The USB Stick UZB

The USB Stick ’UZB’ allows enabling Z-Way™ on various platforms. Figure 2.4 shows the device.

It is plugged into a free standard USB port. UNIX-based operating systems will recognize the stick and generate a

virtual serial device named /dev/�yACM0 or /dev/cu.usbmodem or similar. Windows will generate one virtual

serial port COM XX .

Once Z-Way
™

is started, it will connect to the Z-Wave hardware using this virtual serial device.

The USB stick is very small (presently the smallest Z-Wave device in the world) and will stick quite close to the

enclosure of the PC or NAS. This may interfere with the wireless range. If you experience problems with the wireless

range, please use a standard USB extender cable to get the UZB antenna further away from the PC.

In case the UZB is not loaded with a Z-Way
™

license (the stick is generally sold in two versions, one with a license

and one without for use with 3rd party so�ware), the license can be loaded once Z-Way
™

is up and running. Please

use the Z-Wave Expert User Interface as described in Section 7 to apply the license. The license is a simple string

that usually comes printed in a scratch card. Go to Network Controller Info and click on the bu�on License Upgrade . You

will see a dialog as shown in Figure 2.5.

The Buy extension bu�on leads you to instructions about how to extend the capabilities of the UZB stick by buying extra

licensing files. The input field below allows inserting and applying the license key manually. Please note that:

• You must be connected to the internet to activate the license key.

• Every license key can only be used once (like scratch cards for prepaid phones).

• It is possible to apply various license files to the same hardware.

• The license is stored in the hardware. You can do a complete reinstallation of Z-Way
™

on your platform or

connect the UZB to a totally new platform without losing the license. However, loosing or damaging the UZB

key means loosing the license!

It is possible to run multiple UZBs on one single hardware platform or even combine a RaZberry shield with a UZB

on the same Raspberry Pi. Each piece of hardware will then manage its own network of Z-Wave devices having its

own Home ID. However, Z-Way
™

allows using devices of di�erent Z-Wave networks together. This can be used to

use products with di�erent frequencies in one controller.

In order to enable a second Z-Wave transceiver (dedicated onboard, UZB or RaZberry), please use the standard user

interface as described in Chapter 4. Go to the app management section and start another instance of the app ’Z-Wave

Network Access’. Choose the new virtual serial device created by the new hardware.

13

http://products.z-wavealliance.org

2 Z-Way™ enabled Hardware

Figure 2.5: UZB license upgrade

Please note that the standard user interface will support devices from two networks, but you need to use the Z-Wave

Expert User Interface to manage the second network. The inclusion and exclusion functions of the standard user

interface will always use the first Z-Wave network.

2.2.1 Boot-Up Self-Test

On being powered up, the blue LED will light up, indicating that the self-testing has started. A�er about two seconds,

the LED goes o�, indicating that that self-testing has been done successfully. If the LED remains lit, it means that the

self-testing has failed or the device is not booting up. You will need to replace the hardware in such a scenario.

2.2.2 Frequencies

The Z-Wave transceiver itself can be tuned into every frequency used by Z-Wave. However, to protect the transceiver

and Z-Wave from high energy emissions on nearby frequencies (primarily 4G/LTE cellular radios using the 852 MHz

frequency band), an external antenna filter is used. This limits the frequency changes to countries that share the same

antenna filter. As of now, there are three antenna filter versions identified by their SKU codes.

• SKU: ZMEEUZB2 (865. . . 869 MHz):

– Europe (EU)[default]

– India (IN)

– Russia (RU)

– PR China (CN)

– RSA (EU)

– Middle East(EU)

• SKU: ZMEUUZB2 (908 ... 917 MHz):

– All the Americas except Brazil and Peru (US) [default]

– Israel (ISL)

• SKU: ZMEAUZB2 (919 ... 921 MHz):

– Australia/New Zealand/Brazil/Peru/Malaysia (ANZ) [default]

– Hongkong (HK)

– Japan/Taiwan (JP)

– Korea (KR)

There are two options to change the UZB operating frequency:

1. If you use Z-Wave Expert User Interface , just choose the frontend on Network Management as shown in

the figure. 2.3. For more information about this Z-Wave Expert User Interface , please refer to Chapter 7.

2. There is a shell script available at

http://www.zwave.me/fileadmin/download/changezwf.sh

Just execute the script with

changezwf.sh [COM Port] [US|EU|ANZ|. . .]

14

http://www.zwave.me/fileadmin/download/changezwf.sh

2 Z-Way™ enabled Hardware

2.2.3 Certifications

The UZB is certified for use in di�erent countries.

CE / Europe

The UZB complies with the new Radio Equipment Directive of the European Union in general and the EN 300 220

version 3.1.1 in particular. Full CE declaration can be found in Annex A. The device also complies with the European

ROHS and REACH regulations.

FCC / North America

The UZB stick shield was successfully tested for FCC. The FCC identifier is

2AAYUZMEUUZB.

Z-Wave Plus

The UZB USB stick is a certified hardware platform and a complete solution according to Z-Wave Plus. Please refer

to the certification database

http://products.z-wavealliance.org
for more details.

2.3 Other hardware platforms

It is possible to port Z-Way
™

to other hardware platforms beyond what is supported by binary distributions. Before

contacting the Z-Wave.Me team, you can check if your platform meets the requirements for Z-Way
™

to run on. The

general requirements are:

• min. 200 MHz CPU clock speed,

• CPU architecture based on ARM, Intel or MIPS, as well as a GNU-based development tool chain,

• min. 16 MB Flash memory and 12 MB RAM,

• Operating system supports POSIX-compatible API.

There is a simple test to check if certain hardware on a platform is capable of running Z-Way
™

. Follow the instructions

given on

h�p://razberry.z-wave.me/index.php?id=28.

Only a�er you have double-checked that a binary distribution runs on your system or that the compatibility test has

been passed, you may want to contact the Z-Wave.Me team for further discussions about porting and licensing fees.

15

http://products.z-wavealliance.org

3 Preparation and Ways to Access the System

3.1 Installation on Raspberry Pi

Before you can use the RaZberry solution, you need to complete your gateway hardware and install the so�ware.

Here are two ways to install and start Z-Way
™

:

• A: You do not have Linux OS on your Raspberry Pi installed yet. Please download an SD card image (minimum

8 GB) from the download section of

http://razberry.z-wave.me

. It is based on the Raspberry Pi distribution “Jessie.”

• B (recommended): You already have a working Linux (Jessie) running. Log in and execute the following com-

mand line:

wget -q -O - h�p://razberry.z-wave.me/install | sudo bash .

You may need to configure the Wi-Fi access point of your Raspberry Pi in order to allow direct wireless access.

3.2 Installation on other platforms using UZB

3.2.1 Unix-based Platforms

Let’s assume you already have shell access to your system. You can download a binary distribution from

https://razberry.zwave.me/z-way-server
.

and unpack it. The code can run on every place in the filesystem. Nevertheless, we recommend using /opt/z-way-server

as the folder to store the codebase. The folder content looks as shown in Figure 3.1. For more information on the files

and the file structure of Z-Way
™

, please refer to Chapter 11.4.

Z-Way
™

can then be started using the simple shell command from inside the Z-Way
™

folder:

LD_LIBRARY_PATH=./libs ./zwayserver

Once the code is started, it is possible to access the standard user interface using

http://localhost:8083
To use Z-Wave, the correct port of the Z-Wave transceivers virtual serial port must be configured. Please go to the

user interface menu and open the app ’Z-Way Network Access’ as shown in Figure 3.2. for more information about

Z-Way
™

aps please refer to Chapter 6.

A�er checking the right virtual port created by the operating system, please configure this port name and save the

se�ings. Now Z-Way
™

should be up and running, and you may want to create a startup script to make sure Z-Way
™

is running right a�er booting.

Figure 3.1: Folder Content of Z-Way™

16

http://razberry.z-wave.me
https://razberry.zwave.me/z-way-server
http://localhost:8083

3 Preparation and Ways to Access the System

Figure 3.2: Z-Wave Network Access App

Figure 3.3: Z-Way™ Windows Setup Wizard

3.2.2 Windows

First, note that the Windows platform is only partly supported. There is a binary distribution for Windows, but it

certainly lacks the level of testing required. Please use the binary Windows distribution at your own risk.

Install the MSI file and start it. You will see a nice wizard—see Figure 3.3 —guiding you through the setup process.

The files are installed on the folder of choice as shown in Figure 3.4.

If the UZB stick is plugged into the system, there is a new COM port created for this stick. Figure 3.5 shows the

Windows hardware manager with the new port. A�er passing the initial setup page, open the app ’Z-Way Network

Access’ and double check the right COM port. Note that there is a very special syntax for the COM port ’\\.\COM3’

for serial port 3.

Figure 3.6 shows this dialog.

Under Windows, Z-Way
™

runs as a service. You find the service entry in the Windows Service Management as shown

in Figure 3.7. This dialog also allows starting and stopping the service.

3.3 Local and Remote Access

Z-Way
™

can be accessed in several ways:

• Using a standard web browser
1

on the controller’s IP address. There is an embedded webserver on Port 8083

providing the web pages of the user interface.

• Using a standard web browser but the redirection service

find.zwave.me

The user interface is similar, but there is no need to be on the same IP network or to install an explicit port

forwarding.

• Use one of the native apps from Google Playstore or Apple iTunes. These will, however, use the two same

services for local and remote access as mentioned above and will only render the user interface di�erently.

1
We recommend Chrome, Firefox, or Safari since we frequently see problems with MSIE.

17

find.zwave.me

3 Preparation and Ways to Access the System

Figure 3.4: Z-Way™ Windows Installation

Figure 3.5: Windows Hardware manager with new COM port

Figure 3.6: Z-Wave Network Access App with COM Port

18

3 Preparation and Ways to Access the System

Figure 3.7: Z-Wave as Windows service

Access Advantage Disadvantage

Local IP Ethernet very fast, all data stays within own home no secure connection due to missing IP

certi�cates, IP address must be known, no

access from outside the home

Find Service worked independent of local network set-

ting from everywhere, very safe due to

complete end-2-end security

depends on external service, more delays

Local IP WIFI very fast and secure another WIFI access point, no access from

outside the home

Table 3.1: Comparison of Access methods

• Use your own web or native app-based user interface. Again, you will then use one of the two options mentioned

above.

Both the local access and the remote access using the find-service have their pros and cons as listed in Table 3.1:

The initial access to the user interface must be done using one of the local access routes. Once Z-Way
™

is running,

the first access to the interface asks for some basic setup such as the admin password and an email address to recover

this password. Figure 3.8 shows this screen. The number provided in the title (1) is the unique Z-Way Platform IDof

the device and it will be needed in the future to access the controller remotely using the find service.

Please remember this Z-Way Platform ID!

The on the upper right side allows changing the interface language from standard English to your chosen language.

If your language is not yet available, you may want to consider contributing a translation. Please refer to Chapter

10.3 for details on how to do this.

The language selection can be used for the user interface from this time on, but it can be changed in My Se�ings .

Please note that the email address provided for email recovery will not be stored outside your controller, e.g. in a cloud

service. This provides extra security but also means that certain processes like restore are a bit more complicated than

is usual.

A�er completing the setup, a welcome screen will guide you through the system and introduce the basic user interface

terms/dialogs.

• Element,

• Element View,

19

3 Preparation and Ways to Access the System

Figure 3.8: Initial setup of the Z-Way™ User Interface

• Element Configuration,

• Dashboard,

• Event,

• Timeline,

• Apps

It also o�ers bu�ons for direct access to the two most common actions right a�er installation:

• Add a new physical device.

• Add some virtual device, internet service or application.

A�er completing the setup, it is possible to access Z-Way
™

using the find service, or install a native app for the mobile

phone. Open the url

http://find.z-wave.me/
The dialog on this find service, as shown in Figure 3.10, is intentionally simple. It o�ers two ways to log in:

• Using your Z-Way Platform ID, along with your login name (Example: ’23333/admin’) and your password for

remote login and redirection

• In case you use the service from a PC or a mobile phone within your home, the service will detect this and

show the IP addresses of your Z-Way
™

controllers. It is possible that a Z-Way
™

controller has two IP interfaces

(Ethernet + Wi-Fi). In this case, both addresses are shown. Clicking on the IP address will lead to the local IP

login screen, as shown in Figure 3.9, where only name (e.g. admin) and password are required.

The menu option Logout in the setup menu of the user interface will terminate the session and return you to the login

screen or the find service depending on how to log in. You can always force the termination of the find session by

calling the URL

http://find.z-wave.me/zboxweb
.

3.4 Security and Privacy

Security and privacy are of great importance. Z-Way
™

tries to maximize security and privacy and will not compromise

them in order to improve user experience and convenience.

• All user data including login name and email address are stored only locally, which means that the controller

must be available and connected to restore passwords. We believe that this is a robust security and privacy

measure.

20

http://find.z-wave.me/
http://find.z-wave.me/zboxweb

3 Preparation and Ways to Access the System

Figure 3.9: Login on local IP address

Figure 3.10: Remote Login Screen

21

3 Preparation and Ways to Access the System

• Z-Way
™

o�ers certain cloud-based services. This requires certain services and connections to the Z-Way
™

cloud service:

– Right a�er boot-up, the Z-Way
™

controller will connect to the find service announcing its presence. This

is done using a reverse ssh service. The client side of this service is available on the Z-Way
™

server and

you can review its work and source code. If you don’t like this service, you can turn it o� using the Z-Way

Smart Home Interface. However, be prepared not to have the find service available anymore.

– The backup to cloud service will also create a copy of your device data on the cloud service. This is very

convenient and ensures that you have a backup file when needed. If you feel uncomfortable leaving a copy

of your smart home configuration on the Z-Way
™

cloud service, just don’t use this service and turn it o�.

• The find service allows h�ps connection and provides a valid certificate issued by COMODO RSA Domain

Validation Secure Server CA. Please check the validity of the certificate before using the find service. This means

that the access using the find service has established a complete secure connection from the web browser via

the find service to your controller at home.

• There is no h�ps access enabled to the local port. This is because there is no way to create a valid certificate

on an IP address that is assigned dynamically using DHCP. It would still be possible to run encryption with

h�ps, but we believe that this would be mimicking security without having real security. That’s why we only

keep h�p to send a clear message about the risk of accessing a local IP address. We strongly recommend doing

an initial password se�ing and subsequent local access using Wi-Fi only since Wi-Fi comes with its own very

secure encryption based on WPA.

22

4 The Web Browser User Interface

The Z-Way Smart Home Interfaceis considered the main control interface of Z-Way
™

.

A screenshot overview is shown in Figure 4.1 marking the essential parts of the interface. It looks similar on di�erent

devices such as a desktop PC, smartphone, and tablet (both native app and browser), but will adapt to the screen size.

The Z-Way Smart Home Interfacefollows some very clear logic thats was developed by Prof. Christian Paetz and

presented the first time on the Smart Home Summit 2014 in Munich/Germany. Annex B shows the short slide deck

of this initial presentation.

The following basic rules apply:

1. Elements: Every function of any device is shown as one single (No. 7). (In case a physical device has multiple

functions, like switching and metering, it will be o�ered as multiple elements). All elements are listed in the

elements view (No. 3) and can be filtered by function type (switch, dimmer, sensor) or other filtering criteria.

2. Elements Configuration: Every element o�ers a configuration interface (No. 8) for changing names, removing

it from the screens, etc. Important elements can be placed in the Dashboard (No. 1).

3. Event: Every change in a sensor value or a switching status is called an “Event” and is shown in the timeline

(No. 4). Filtering allows monitoring the changes in one single function or device. Besides, elements can be

assigned to di�erent rooms (No. 2).

4. Apps: All other functions such as time-triggered actions, the use of information from the internet, scenes

plugin of other technologies, and services are realized in apps accessible in the setup menu (No 6). These apps

are ready-to-use scripts/templates that can add extra logic and functionality such as logic rules like “IF->THEN,”

scene definitions, timers, and interactions with external (non-Z-Wave) devices connected via USB dongle or via

internet. Some apps are built into the system. More can be downloaded from an app store. To use an app, you

create an instance of this app and configure its properties. If useful, you can create more than one instance of

one single app. The apps can create none, one, or multiple new elements and events. You can install new apps

and manage them using the menu Configuration -> Apps.

4.1 Z-Way Smart Home InterfaceDaily Usage

4.1.1 Standard Element View

Figure 4.1 shows the standard element view of the Z-Way Smart Home Interface. Elements with an icon, bu�ons, or

variables are placed side by side. Depending on the screen size, they are grouped in one (mobile phone), two (pad), or

three (PC screen) columns.

The very same display is available on the Dashboard (No. 1), the Room View (No. 2), and the Element view (No. 3). The

element view shows all elements (No. 7) available while the dashboard shows elements that where manually selected

for display on the dashboard. The clock on the topline menu (No. 5) shows the actual time in the time zone of the

gateway (not the actual position of the browser). The elements can be filtered by element type or can be ordered by

• Time of creation (ascending or descending)

• Given name in alphabetical order (ascending or descending)

• Last update

• Custom

The bu�on Drag-and-Drop turns the user interface in a reordering mode. Just drag and drop elements to reorder them.

A�er the new order is saved, it is available as ’custom’. The same logic can be applied to all view showing elements

(Element View, Dashboard, and Room View).

A search field allows searching for given names of the elements.

All elements can be assigned to “tags”: Tags are text blocks that can be arbitrarily chosen. Typical tags are “Tempera-

tures,” “Energy,” and “Outdoor.” Multiple elements can have the same tag and one element can have several tags. By

selecting a tag, only elements are shown that are tagged with this name.

Tags are managed on the element configurations described below.

Figure 4.2 shows two typical elements: Each element has a given name. This name may refer to the function or the

position. Please make sure to keep the name short enough so that no display problem is created. Each element also

has one or several icons. In case the element represents an actor function, the icon usually refers to the switching

state of the actor (on or o�, up or down). Changing icons also indicate the status of binary sensors such as motions

detectors. Analog sensors typically only have one icon. The upper element is an actor allowing to be switched on and

23

4 The Web Browser User Interface

Figure 4.1: Z-Way Smart Home Interface

Figure 4.2: Elements

24

4 The Web Browser User Interface

Figure 4.3: Elements con�guration - upper part

o�.

The (No. 8 on Figure 4.1) on the right-hand side opens the element configuration dialog. The symbol le� to the

configuration wheel depends on the type of device. For devices with analog values such as rain sensors, temperatures,

etc., the icon will open a 24-hour history of the sensor value. Devices with 24-hour history also show a time

stamp when the last value update was received. Clicking on the large icon itself will call for a value update, but please

keep in mind that ba�ery-operated devices will only send updated values a�er the next wakeup. For event-driven

devices such as actuators or binary sensors, an icon will show a list of the last 10 events with the time stamp.

One click away is then the full list of events, as described in Section 4.1.1, but filtered for this element.

Element Configuration

Every element shown has its own configuration dialog (No. 7 on 4.1). Clicking on the symbol on the upper

right-hand side opens this dialog.

Figure 4.3 shows the upper part of the element configuration dialog.

The element name is the given name of the element. Z-Way
™

tries to automatically find a reasonable name, but the

user should change this name according to the specific setup of the home.

• Generated By: This refers to the physical device of the Z-Way
™

application that generated this element. In the

example above, this device is the physical Z-Wave device with Node ID 2. Clicking on the bu�on with the name

of the element-creator leads to the configuration dialog of the physical device, i.e. the Z-Way
™

application.

• Hide element: As explained in the dialog, this checkbox will hide the element. However, this se�ing can be

reversed by showing hidden devices. This se�ing is for cosmetic view only.

• Delete Element: This checkbox allows removing the element. It will not only disappear from the element view

but also from any dropdown list to setup device relationships, etc. For information on how to re-activate such

an element, refer to the user se�ings dialog description in Section 4.2.4.

• Add to Dashboard: This places the element on the dashboard.

• Hide events from this device: This keeps the device in the element view or Dashboard, but no events of this

device will be shown in the event timeline.

• Assign to room: This allows assigning this element to a certain room or changing this assignment.

Figure 4.4 shows the lower part of the element configuration dialog. The tag option allows se�ing and removing tags.

When a tag name is inserted into the text field, it autocompletes known tag names.

The custom icon sub-dialog allows changing the icons of the element. Each element has one, two, or three icons

depending on the status indicated. Each of the icons can be replaced by an own individual icon. Just click on the

25

4 The Web Browser User Interface

Figure 4.4: Elements con�guration - lower part

pencil bu�on to change the icon. To download more icons, refer to the customization section in the configuration

menu.

Room View

The Z-Way Smart Home Interfaceallows managing di�erent rooms and assigning elements to rooms. Each element

can be placed in one room only.

Clicking on the room symbol on the top menu opens the room view with a list of rooms, as shown in Figure 4.5.

Each room has its own element with a background image that can be configured. It is possible to add new rooms

using the bu�on labeled Add room . The room is named and the number of elements in this room is shown. Per room

there are up to three sensors that can be selected as “quick-view sensors”. They are shown right below the name and

in the top menu in the individual room view.

Clicking on the room element leads to the room view, as shown in Figure 4.6.

The room view lists all the elements in the room. As in the element view, they can be re-arranged using the drag-and-

Figure 4.5: Room overview

26

4 The Web Browser User Interface

Figure 4.6: Room View

drop feature.

The top line shows up to three quick sensors and allows quick change of the room using the dropdown list. If your

browser supports gestures, you can change the rooms by swiping le� or right.

Clicking on the symbol of the room element or inside the room view in the top line opens the room configuration

dialog, as shown in Figure 4.7.

Each room can have an individual name. Besides some pre-installed images, it is possible to upload images for the

room. A checkbox defines the room image that is used as a background image in the room view.

The dialog allows assigning elements to this room which were not assigned to any room yet. Just click on the element

name in the list of Available devices .

The li�le checkbox on the right-hand side allows selecting up to three sensors as “quick-view sensors”.

Event Timeline

The event timeline is the forth menu item in the top menu.

The timeline dialog o�ers a chronological view of the events in the Smart Home. The events are:

• Change of status of actuators such as dimmers, blind controls, or switches

• Tripping of binary sensors (motion, door, etc.)

• Change of measured value of sensors

• Network status changes (device lost, device back, etc.)

The standard view of the timeline, as shown in Figure 4.8, lists all events with the icon of the element, room info, time

stamp, name of the element, and status info. Every line item has a context menu on the right-hand side. This menu

allows

• showing events of this source element only,

• showing events of this event type only,

• showing events that have the same event type,

• directly moving to the element configuration page of this element,

• hiding all events from this source.

4.1.2 News feed

Each Z-Way
™

controller is connected to an RSS feed. This feed contains news and alerts about the platform. Whenever

there is a new feed entry, the top menu bar will indicate this with a sign, as shown with Marker 1 in Figure 4.9. Clicking

on this opens the full list of news. This full list can also be accessed using the ’News’ menu item in the configuration

section, as described in Section 4.2.5.

27

4 The Web Browser User Interface

Figure 4.7: Room con�guration dialog

Figure 4.8: Timeline

Figure 4.9: News Indicator

28

4 The Web Browser User Interface

Figure 4.10: Con�guration menu

4.2 The Configuration Menu

Clicking on the menu item (marked as No. 2 in Figure 4.9) on the right-hand side opens the configuration menu.

The configuration o�ers various functions to enhance and configure the smart home system as such and the user

interface. Figure 4.10 shows the configuration menu of Z-Way
™

.

4.2.1 Apps

This menu option allows managing the home automation applications and interfaces of Internet or IP-based services

or devices.

Z-Way
™

apps are like so�ware applications that use the infrastructure of the Z-Wave network to provide application

solutions and dependencies. These so�ware applications also extend the capabilities of the network and implement

automation functions.

Like any other application so�ware such as those for PCs, some Z-Way
™

apps are preinstalled on the device, and

others can be downloaded and installed by the user. Like application so�ware, some so�ware solutions can only run

once while others can be started multiple times.

The app menu has three parts:

• List of apps locally available for use.

• List of apps available on the central server and ready for download.

• List of apps that are active and running.

The list of local apps, as displayed in Figure 4.11, shows a small subset of apps that are already on the local devices.

The top part shows some of the apps that are most frequently used (featured apps). A filter allows filtering for certain

app types; ordering and direct search in the search box also help to find the right app. If there are active instances of

the app (so�ware running x times with di�erent parameters), this is indicated right below the name of the app.

Clicking on the name will open a dialog with further information about the app. Clicking on the + bu�on will lead

right to the configuration page of the app.

The online app list, as shown in Figure 4.12, o�ers the same functions. However, apps need to be downloaded first

before they can be configured and started. Clicking on the download bu�on will copy the app to the local repository

and start the configuration dialog, as shown in Figure 4.13.

Each app has its own name that can be changed. Depending on the function of the app, there are several di�erent

setup parameters.

Please note again that some apps can be started multiple times while other apps are “singletons.” They must

only run once on the system. Once they run, they will disappear from the repository since they cannot be

started again. Configuration of such a singleton is still possible using the menu of running apps. If such an

29

4 The Web Browser User Interface

Figure 4.11: Local Apps

Figure 4.12: Online Apps

30

4 The Web Browser User Interface

Figure 4.13: App Setup

app stops, the app entry will reappear in the local repository.

The tab for active app management is shown in Figure 4.14. It lists all active apps by app type. If there are more than

one app of the same type (e.g. ’IF->THEN’ is usually needed multiple times), the view is collapsed for this type of

application but can be expanded. It is possible to expand all sections of multiple app types using the checkbox on the

top. It is also possible to search for certain app names.

Every app line has a submenu with the following functions:

• : Stop this app

• : Allows cloning an app. This will open a dialog for a new instance of the same app with the same se�ings.

A�er saving these se�ings, the new app becomes active and is shown in the list too.

• : Stop the App. It remains configured but is inactive. Once inactive, the green flame changes into a red ON

bu�on to restart the app.

• : Opens the configuration dialog. This is the very dialog to be completed during the initial start of the app.

Please refer to Chapter 6 for more information on di�erent apps.

4.2.2 Devices

The device menu allows managing physical devices. By default, it o�ers two physical device types: “Z-Wave devices”

and “IP cameras.” However, if other wireless communication technologies are activated, they will be shown as well.

Please refer to Chapter 9 for more information on how to integrate further wireless technologies. This section will

also explain how to include/exclude and manage these devices and IP cameras.

Figure 4.15 shows the device list including EnOcean and 433 MHz devices.

Therefore, let us focus here on managing Z-Wave devices. Besides the standard bu�ons to add and manage devices

of the specific communication technology, Z-Wave o�ers one more bu�on to link to a specific second Z-Wave user

interface for installers and professionals. Please refer to Chapter 7 for a detailed description of this very technical,

the so-called Z-Wave Expert User Interface . Please note that all day-to-day management functions can be done

without involving this very specific and technical interface.

In case the controller hardware supports the new Smart Start feature of Z-Wave, there will be another bu�on to

include new devices - the QR code san as sown in Figure 4.16.

Smart Start is a new way to include devices into Z-Wave using the QR code provided with S2 authentication. The user

scans the QR code thats is stored in an internal so called provisioning list. Smart Start Devices will then announce to

be included when powered up. In case the S2 key is in the provisioning list the controller will automatically include

this new device without any further user interaction.

The bu�on ’QR Code’ opens a dialog to capture the Device Key, either by typing them in or by scanning the QR.

Another menu tab allows managing the Device Keys already captured by not used for inclusion.

31

4 The Web Browser User Interface

Figure 4.14: Active App Management

Figure 4.15: Device Management Overview

Figure 4.16: Scan QR Code for Smart Start

32

4 The Web Browser User Interface

Figure 4.17: Z-Wave Device Vendor Overview

Please note that a standard web browser running on a standard PC may not provide the capability to scan QR codes.

Inclusion

To include a new Z-Wave device (one of the first steps needed to start a smart home system!) please click on the +

bu�on on the Z-Wave device part. This will open an overview of current Z-Wave device vendors by name and logo.

Figure 4.17 shows this overview.

Generally, there is no need to know the Z-Wave brand and product code. All Z-Wave devices are self-describing,

and automatically identified products will provide the same functions as the devices that were pre-identified. Thus,

experienced users will always click on the upper bu�on to add a new unidentified Z-Wave device. The only reason

to find a specific device from the list is to get some additional information on how to include this device. This refers

to the bu�on and the bu�on push sequence needed for inclusion.

Since most Z-Wave devices have one Z-Wave inclusion bu�on and single or triple click will do the inclusion, this

information is only needed for some devices with exotic inclusion options. Both the bu�ons to include an unknown

device and the right-hand side bu�on of an identified bu�on will lead to the same inclusion dialog as shown in Figure

4.18.

It is recommended to exclude (reset) a device before it

gets included.

However, if you are sure that the device is new and in factory default state, you may skip this step. Right next to

the inclusion bu�on there is another small bu�on that defines if the device will be included with special security

functions. By default, the security option is enforced. However, some devices in the market may not work as expected

using the security function. In case there is a connection problem, unsecure inclusion may still work.

Once the inclusion mode has been started, the controller waits for devices to be included. Figure 4.19 shows the

controller at this moment. The inclusion mode can be terminated using the same bu�on. Any new device included

will also terminate the process.

In case the new device requires authorization, this needs to be done right a�er inclusion. Authorization ensures that

the device that appears on the user interface is indeed the device in hand. To ensure this the device o�ers either a QR

code to be read or a device individual PIN number, both types of information need to be provided to the user interface

manually. The controller will then match the information provided by the user with the information provided by the

device using wireless communication. Only in case they match the device can be used.

Authentication is only required for certain devices. In this case, a window like that shown in Figure 4.21 pops up asking

for the authentication information. Once given, they are checked. If authentication fails, a warning is displayed. It is

not possible to just repeat the authentication. The device must be excluded and re-included.

Any new device will be interviewed next. In this process, all functions announced by the device itself will be verified

33

4 The Web Browser User Interface

Figure 4.18: Z-Wave Device Inclusion Dialog

Figure 4.19: Z-Wave Device Exclusion Dialog

34

4 The Web Browser User Interface

Figure 4.20: Z-Wave Device Successful Inclusion

Figure 4.21: Z-Wave Device Authentication

35

4 The Web Browser User Interface

Figure 4.22: Z-Wave Device manual con�guration

and certain user interface relevant data will be called from the device. A progress bar such as that in Figure 4.20 shows

the status.

Once the interview was passed successfully, a dialog o�ers some initial manual configuration functions, as shown in

Figure 4.18:

• Rename the device as such. This device name only refers to the physical device and will not be shown in the

standard user interface. Use descriptive words like “Popp Smoke on sealing” to re-identify the device later.

• It is possible to move all elements shown below into one single room. If this is not done here, it is still possible

to move each element on the configuration dialog as described in Section 4.1.1.

• The list of the elements generated by the new device. Here you can change the name that will then appear on

the element overview, etc. You can also deactivate the element if you don’t see any need to have it.

• Some physical devices o�er further hardware-specific se�ings such as wakeup interval time. If the new device

o�ers such configuration, another bu�on for hardware configuration is shown. Please refer to the Z-Wave

Expert User Interface configuration description in Chapter 7.4 for more information on how to use this

dialog. Both dialogs are identical.

The interview process does not only detect all information from the device; it also tests the connectivity of the device.

Certain communication may fail. Another good reason for such a failure is that a ba�ery-operated device goes into

deep sleep mode too fast. Figure 4.23 shows the error message in case of failure. In most cases, it’s OK to just redo

the interview and wake up the device.

If the second a�empt at the interview fails, the controllers gives the option to accept the result or to redo the entire

process. Figure 4.24 shows this dialog box.

Once the interview has passed and all configurations are done, the device can be used.

Z-Wave Device Management

The second option for Z-Wave devices besides adding (including) new devices is the device management menu.

Clicking on the bu�on Manage bu�on opens a menu with three tabs:

• Figure 4.25 shows a list of the physical Z-Wave devices. The * bu�on will open the very same device man-

agement dialog as described during manual post-inclusion configuration in Section 4.2.2. The x bu�on opens

a dialog to remove the device. As shown in Figure 4.28 there are two options:

– Reset and Remove: This bu�on will start the normal Z-Wave Exclusion Process. Exclusion requires that

the device to be excluded is still functioning and accessable.

– Remove: Only in case the device is defect nor not existent anymore this option shall be used. It will use

the Z-Wave function ’Remove Failed Node’ without any involvement of the device to be removed.

36

4 The Web Browser User Interface

Figure 4.23: Z-Wave device inclusion failed

Figure 4.24: Z-Wave device inclusion repeated

37

4 The Web Browser User Interface

Figure 4.25: Z-Wave device overview

Figure 4.26: Z-Wave device battery overview

• Figure 4.26 shows the ba�ery status overview. The list can be ordered by the ba�ery charging level.

• Figure 4.27 shows a list of network status messages. This can be warnings for empty ba�ery, devices lost, devices

replaced, etc. Clicking on the device name lists all the elements created by this physical device.

4.2.3 Customize

The customization menu option allows changing the look and feel of your Z-Way
™

user interface. You can add more

icons as device-specific icons and you can change the look and feel using skins. For more information on skins and

how to create them, please refer to Chapter 10.1. This menu here only deals with skins that are already available.

The menu o�ers four tabs. The tab shown in Figure 4.29 shows the list of skins locally available. They can be activated

by just clicking on the green activation bu�on.

The tab shown in Figure 4.30 o�ers the list of skins available for download. They must be downloaded first before

they can be activated and applied.

The tab shown in Figure 4.31 lists the additional icons available on the controller. They can be activated per element

on the element configuration menu described in Chapter 4.1.1.

Figure 4.27: Z-Wave device network status

38

4 The Web Browser User Interface

Figure 4.28: Z-Wave Device Reset /Exclusion

Figure 4.29: Local Skins

Figure 4.30: Skins on Server

39

4 The Web Browser User Interface

Figure 4.31: Local Icons

The tab shown in Figure 4.32 o�ers additional icon sets available on the server. They must be downloaded first before

they can be activated and applied.

4.2.4 My Se�ings

In this dialog, as shown in Figure 4.33, the local user interface se�ings for the logged in user can be changed.

• Name: This is the name of the account. Even if this name is changed, the login name is NOT changed.

• Email: This email is used for certain email notifications, for password recovery and for the recovery of cloud

backups.

• Language: Click on the flags to change the user interface language.

• UI update rate: This is the refresh rate for the user interface web pages.

• Expert View: Having the checkbox marked shows some system apps in the overview of running apps that are

not shown by default. For more information on apps, please refer to Chapter 6.

• Events: The two checkboxes allow suppressing certain events. They are then removed from the timeline and

will not create any out-of-band alert.

• Hidden events of devices: This is a list of the devices where events are deactivated in the element configu-

ration overview. This is the only way to reactivate them if needed. For more information about the element

configuration, dialog please refer to Chapter 4.1.1.

Figure 4.34 shows the lower part of the Se�ings dialog. In My User Account the individual password can be changed.

The section Add mobile device shows a QR code to simplify the setup. Please refer to Section 5 for more information on

how to use this QR code.

4.2.5 Management

The menu item Management opens a new menu with options to technically manage the platform. These management

options are available for administrators only. Please refer to Section 4.3 for more information about the management

options.

News

As shown in Figure 4.35, this dialog lists all news entries received from the RSS feed.

Logout

The logout bu�on cancels the user sessions of the Z-Way Smart Home Interface. In case of a login from

find.zwave.me

40

find.zwave.me

4 The Web Browser User Interface

Figure 4.32: Icon-Sets on Server

Figure 4.33: My Settings Dialog - upper part

41

4 The Web Browser User Interface

Figure 4.34: My Settings Dialog - lower part

Figure 4.35: List of Z-Way™ news

42

4 The Web Browser User Interface

Figure 4.36: Administrator Management Menu

Figure 4.37: User Management

the user is redirected to the find.zwave.me overview page or else to the local login page.

4.3 The Management Interface

Figure 4.36 shows the controller management menu. Please note that this menu is available for users with

administrator privileges only.

4.3.1 User Management

Figure 4.37 shows the list of users. It is possible to add more users, change their se�ings, and remove them. Clicking

on the setup bu�on opens the user setup dialog. It allows managing

• Name and Email

• Role types: This defines the access rights of the user account. Admin allows accessing the management sub-

menu. Standard users will be role-type “users.” It is possible to further restrict a user account to real local access

or to make it an anonymous user.

• Language of the user interface

• Password se�ings

4.3.2 Remote Access Management

The dialog shown in Figure 4.38 allows managing the remote access functions of the controller. By default, the remote

access function is activated. This enables accessing the controller from any end device in the Internet, e.g. a mobile

phone. Please refer to Chapter 3.3 for information on how this remote access is implemented and what security

implications this function has.

The remote support function is deactivated by default. This function allows support sta� with access rights to the

remote access server to remotely access your controller using remote shell (ssh). For complicated support issues, the

43

4 The Web Browser User Interface

Figure 4.38: Remote Access Management

Figure 4.39: Time Zone Management

support sta� may ask to activate this function. Please make sure to deactivate it a�er the session. The remote ssh

is only accessible to support sta� with support infrastructure rights. Nevertheless, there is no good reason to keep a

port open if not needed.

4.3.3 Time Zone

The dialog shown in Figure 4.39 allows managing the time zone of the controller. This ensures that all time stamps

and the time clock on the top menu bar refer correctly to the local time at the location of the server. Please note that

the time remains unchanged if you access the device from a browser from a di�erent time zone.

4.3.4 Backup & Restore

Backup and restore can be done in two di�erent ways:

• Time driven and automated into the Z-Way
™

cloud service.

• Manually triggered into filesystem of PC running the web browser.

The first block of the Backup & Restore dialog controls the cloud backup, which can be activated or deactivated, as shown

in Figure 4.40. When activated, the controller will automatically generate a backup file and send it to the cloud server

using SSL encryption.

The files are stored on a server managed by Z-Wave.Me. This is a convenient way to keep and update a backup

file—and its free of charge. However, if you don’t trust this server or the company, just don’t use cloud backup!

The cloud backup interface allows defining the backup interval and the notification in terms of failed or successful

backup performed.

The local backup option, as shown in Figure 4.41, will generate a local backup file that needs to be stored on the local

hard drive of the PC running the web browser. The file is identical to the file stored in the cloud. From the technical

side, this is a ZIP file that can even be decompressed and audited. It will comprise XML and JSON files and images

that were uploaded before.

If the cloud backup option was chosen, the backup file needs to be downloaded to the local PC before being applied

as a restore file. Clicking on the bu�on “Request Cloud Backup” will cause the server to generate a temporarily valid

token which is sent by mail to the mail address defined for the admin account. This email will contain an explanation

44

4 The Web Browser User Interface

Figure 4.40: Automated Backup into Cloud

Figure 4.41: Local Back and Restore

45

4 The Web Browser User Interface

Figure 4.42: Firmware Update Options

of the process and a unique link to an online list of backup files available. Just download the file of choice.

The real restore function always requires a file uploaded from the local file system. A checkbox ensures that the user

understands the consequences of applying a restore file.

Please note that the backup and restore function will only handle files on the controller, and not the Z-Wave network

topology stored in the Z-Wave transceiver chip.

To overwrite this content, please refer to the Z-Wave Expert User Interface , as described in Chapter 7.5.1.

4.3.5 Factory default

This function resets all functions of the controller. All uploaded images will be deleted and all given names and se�ings

will be removed. The included Z-Wave devices will NOT be removed. For removing them from the controller, please

refer to the basic Z-Wave literature, e.g. the book “Z-Wave Essentials” as mentioned in Chapter 1.

4.3.6 Firmware Update

The firmware update menu as shown in figure 4.42 refers to two di�erent processes:

• Update device database : This bu�on can be triggered to update the Z-Wave device database used for the inclusion

process described in Chapter 4.2.2. This update is not critical and new firmware updates will update this device

database anyway. However, for debugging purposes, it is sometimes beneficial to force a database update.

• Firmware Update : This option will update the whole firmware including the dialog o�ering this update.

Updating the firmware is a quite complex process. In the normal operation mode, all communication between user

interface and controller backend is handled using IP Port 8083. However, there are good reasons not to use this port

for the management of the firmware update:

• The update script will overwrite the same so�ware that informs about the update as such.

• In case the update fails, or the update firmware is damaged and not working correctly, there is no way to turn

the update back since the dialog doing so (on port 8083) will not be available anymore.

This is why hi�ing the bu�on Open Updater will open a new user interface embedded into the current interface. Figure

4.43 shows this new black-background user interface dedicated to the firmware update function. This user interface

is served from another webserver temporarily active on IP port 8084. Hence, it would be possible to directly access

this user interface using the

http://MYIP:8084
.

This user interface will remain active for about 10 minutes. This is enough time to perform the firmware update and

revert it in case of problems. A�er the 10 minutes, the service on 8084 is deactivated automatically.

The firmware update dialog shows the current firmware and o�ers update to the most recently released firmware

46

http://MYIP:8084

4 The Web Browser User Interface

Figure 4.43: Firmware Update Dialog

version. For debugging or trouble shooting purposes, it is possible to load a specific firmware version. A change log

shows the changes of all the o�icial firmware release versions.

4.3.7 App Store Access

The app store allows downloading new apps provided either by Z-Wave.Me or other independent developers. Some

of these developers may want to limit the use of their apps to a certain group of people, either because this is related

to their business model, or because the apps are beta stage or for trial only.

The token concept is a simple and e�icient method to limit access. Apps that are uploaded to the app server (For more

information on how to create and upload apps, please refer to Chapter 6) can be marked with one or more tags. These

tags are simple strings and the developer can choose whatever token he wants. He can also have more than one tag

for di�erent purposes.

In order to access apps that are tagged, the various tags need to be added to the controller using the form shown in

Figure 4.44. Tags can be added and removed. Once a tag is added, all the apps with this tag will be shown in the app

store, as described in Section 4.2.1.

4.3.8 Report Problem

The menu item, as shown in Figure 4.45, demonstrates a quick and simple way to report bugs and problems related

to this User Interface. Providing an email is optional, but please be aware that the form will transmit some meta

data such as version number of the User Interfaces or version number of the firmware. If you don’t like to share such

information, please use your personal email. Also, please don’t expect an individual answer to the bug reports. This

is not a support tool.

4.3.9 Info

The info menu item provides some version information for the user interface and the backend. This information is

usually needed for support and troubleshooting purposes only.

47

4 The Web Browser User Interface

Figure 4.44: App Store Access

Figure 4.45: Problem Reporting Form

48

5 Mobile Apps

Accessing the Smart Home from a mobile device such as a phone or an iPad has become popular. Z-Way
™

o�ers

multiple ways to access a user interface from one of these mobile devices. Thanks to an open API, it is also possible

to design your mobile app or use third-party apps supporting Z-Way
™

.

Hence, while other vendors o�er just one app per mobile platform (Android, IOS), Z-Way
™

allows you to choose what

you like best.

5.1 Standard mobile web browsers

The Z-Way Smart Home Interfaceand the Z-Wave Expert User Interface are developed as a responsive design,

meaning that the web pages will determine the screen size of your device and re-render accordingly. As a result, the

Z-Way Smart Home Interfaceand the Z-Wave Expert User Interface described in Chapter 7 are quite usable with

small mobile screens. Figure 5.1 shows a dialog from the web browser interface on a small mobile screen.

The Z-Way Smart Home Interfacewill always be the most advanced and most recent interface incorporating all new

functions and features. This means accessing the user interface on a mobile device with a standard browser makes

these functions available on the mobile device first.

The big disadvantage is that the interface is certainly slower than a native app, and the dialogs and menu items may

only be partly optimized for small screens.

Accessing the user interface from a mobile web browser is not much di�erent than from a PC-based browser. Just

type in the IP address of the controller or use the find.zwave.me service.

5.2 Native HTML based apps

It is interesting that most apps available in the commonly used app stores are wri�en in HTML and embedded into

a native wrapper that allows enhancing the HTMP pages with further functions. The standard Z-Way
™

apps in the

iTunes and Google Play Store follow this approach. You find the apps here:

• Android: h�ps://play.google.com/store/apps/details? id=com.app.zwave.zway_control

• IOS: h�ps://itunes.apple.com/de/app/zway-control/id1033129180

The apps are optimized for mobile devices and apps, e.g. to use the QR code for a fast setup. They will also cache data

be�er and align some other functions. There is only one drawback. If the app is used for inhouse control, such fast

access to lights, the overall design of the data handling and caching will still imply some delays. Also, the app only

allows managing one home per device since it cannot be installed twice for two di�erent homes.

5.3 Pure Native Apps

For the Android platform only, there is a second Z-Way
™

control app that is wri�en completely in Java for very fast

access to actuators. The usage philosophy is similar to the other apps with dashboard, room view, timeline, history,

etc. Figure 5.3 gives one view of the app.

The app, named ’Z-Way Control’, is available on the Google Play Store:

• h�ps://play.google.com/store/apps/details?id=de.pathec.hubapp&hl=de

5.4 Third-Party Apps

The outstanding reputation of Z-Way
™

as Z-Wave backend caused many third-party suppliers and developers to sup-

port Z-Way
™

with their frontends. The following explanations can only cover a subset of solution and user interfaces.

However, the three examples show three very typical approaches.

5.4.1 Imperihome

Imperihome is a vendor-agnostic app that is available for various mobile platforms. It supports quite a long list of

smart home devices and systems such as Z-Way
™

. The basic version of the app is available free of cost. The extended

49

5 Mobile Apps

Figure 5.1: Web User Interface on small mobile screen

Figure 5.2: Mobile App Icon from App Store

50

5 Mobile Apps

Figure 5.3: Native HTML based app

Figure 5.4: Native fast app for Android

51

5 Mobile Apps

Figure 5.5: Imperihome App

Figure 5.6: Z-Way™ app to support Fibaro Mobile App

version costs some 5 USD/EUR.

5.4.2 Fibaro

Fibaro is one of the leading Z-Wave-based smart home suppliers in Europe. They o�er their own Z-Wave smart home

controller, Home Centre Lite of Home Centre 2. Fibaro is focused on design and so their mobile app is quite stylish

too.

You can use the Fibaro app, which is designed for their own Home Centre 2, to control Z-Way
™

.

Just download the Fibaro supporter app from the Z-Way
™

app store. Chapter 6 describes how to do this. A�er that,

download the Fibaro mobile app from iTunes or Google Play Store, and configure accordingly.

5.4.3 openHAB

openHAB (www.openhab.org) is one example of an open source smart home control system that uses Z-Way
™

to

manage the Z-Wave network part. Once the connection is set up, it is possible to use one of the mobile openHAB apps

to control Z-Way
™

-connected devices. For more information about this binding between Z-Way
™

and openHAB,

please refer to the openHAB website.

52

5 Mobile Apps

Figure 5.7: Fibaro Mobile App

5.5 Shortcuts for Android and Integration into Third party so�ware

All access to the Z-Way
™

backend can be done using simple HTTP request doable from any webserver. However the

client needs to be authenticated. For more information about authentication and client access please refer to chapter

11 and particularly 13.1.

To access the UI with a one HTTP command you need to have a small script on your server. A PHP version of such a

script is available at

http://www.z-wave.me/download/zcmd.php.zip
.

Please unzip and adapt - if needed - to your needs. We have installed the very same script at

https://service.z-wave.me/zcmd.php
Please note that this script - if not running on your own server - bears a security risk since all of your commands run

on our server. You will need to trust our server and the safety of the script. Hence we encourage you to use and adapt

the script and run in on your own webserver if you have any.

One nice application of the single-line access is placing a shortcut on the Android home screen. This allows to execute

important functions in the Smart Home with one click without even opening the app.

First, install the Android App ’HTTP Request Shortcuts’ by ’Waboodoo’

https://play.google.com/store/apps/details?id=ch.rmy.android.http_shortcuts
The you need two important information from Z-Way beside your login credentials:

• The name of the device: Click on the Configuration Menu of the element you want to control. Element names

look like ZWayVDev_zway_83-0-37 where 83 is the Z-Wave device Id, 0 is the instance, 37 is the command

class Id (here Switch Binary).

• The command you want to execute. For switches or dimmers it is ’on’ and ’o�’, for a door lock its ’open’ and

’close’.

Now start the app ’HTTP Shortcuts’ and add a new shortcut. Choose name, icon and description. Pick ’POST’ as

Access method and enter the url

https://service.z-wave.me/zcmd.phporthescriptonyourserver
.

For security reasons we strongly recommend to use HTTPS only. HTTP is not protecting your credentials. Leave

authentication and request header untouched. Using the bu�on ’Add parameter’ add your credentials and the com-

mand:

53

http://www.z-wave.me/download/zcmd.php.zip
https://service.z-wave.me/zcmd.php
https://play.google.com/store/apps/details?id=ch.rmy.android.http_shortcuts
https://service.z-wave.me/zcmd.php or the script on your server

5 Mobile Apps

• id: boxId/login:password

• cmd: deviceId:command

Then save the se�ings and try to execute it by hi�ing the icon from the list of Shortcuts. Once everything is ok, make

a long push to the icon and choose ’Place on home screen’. On some phones you need to long push on an empty place

on the home screen, then select widgets, find ’HTTP Request Shortcuts’ among the list and then select the desired

shortcut to show.

54

6 The App System: making it intelligent

Z-Way
™

operates on two levels: Every function of the device in the network will be shown as an element. Elements

are shown automatically but can be deactivated or hidden. All other functions are realized and managed in apps.

These apps can be grouped into four categories.

1. More elements that use services and information from the Internet or other TCP/IP-connected devices from

third parties. Examples of this include weather information taken from online weather services or the con-

trol of a SONOS music system. There are also se�ings for out-of-band communication to users utilizing push

notification, email, SMS, and voice output.

2. Logical connections between elements and other services. This is usually referred to as automation. It connects

element functions with each other or with timer information. Example are a time-driven control of lights,

heating, or turning on or o� the light based on a motion detector.

3. Connection and integration of third-party smart home systems and technologies. One of the most commonly

known systems is Apple Homekit. Other systems are openremote.org, IFTTT, etc.

4. A big number of apps is needed to unlock special functions of physical devices (or fix-specific bugs). Examples

are the control of user codes and user accesses of a keypad or special displays of energy consumption that are

not done by Z-Way
™

by default.

Some important apps are already pre-installed on Z-Way
™

. Most of the apps are available online on the server and

need to be downloaded before they can be used. This chapter gives some examples and recommendations for typical

apps available.

6.1 A simple Apps as starter - ’Local Weather’

Displaying the local weather inside the smart home user interface is a simple and popular task. Z-Way
™

o�ers

several apps for this request. Already on the device you fine the app ’Local Weather’ calling data from the known

service openweather.org. The data is provided free of charge; however, an API key is needed to access the data. Visit

www.openweather.org and register as a user to access your API key. A�er that, install the weather app ’Local

Weather’ (see Figure 6.1) from the local app repository. Figure 6.2 shows the configuration dialog:

1. Rename the app to your own needs

2. Pick the name of the city

3. Pick the country of this city (agreed this is foolish, but this is how openweather accepts data)

4. Choose between Celsius and Fahrenheit

5. Insert the API key received from openweather.org

Once activated, a new element is shown on the element view displaying the temperature and the weather situation.

Clicking on the small triangle on the right-hand side opens a small window with more weather information such as

air pressure, wind speed, relative humidity. The data is updated hourly.

It is possible to display certain values as single element in the element view. This can then be used for automation.

Please note, that both the IF and the THEN side of automation like ’IF->THEN’ must always refer to active elements.

for more information about the ’IF->THEN’ app please refer to Chapter 6.2.2.

An interesting app is ’Virtual Rain Sensor’. This app creates an app indicating if it was raining on the location.

This app sits on top of a weather app and uses their functions and setup. This example shows that certain apps can

depend on other apps to be installed first. This concept is known from PC so�ware where certain applications require

certain tools or libraries installed first.

Figure 6.1: The Open Weather app in the App Repository

55

6 The App System: making it intelligent

Figure 6.2: The Open Weather app con�guration

Figure 6.3: The Scene App

6.2 Smart Home Logic

Logic or automation is the core of the Smart Home. It allows doing things automatically depending on certain condi-

tions.

6.2.1 Scene

The most basic step to simplify life is to group multiple actions into one action. There is no need to have a smart

home controller in the home to do this. Even classical electrical wiring allows switching on two lights with one

switch. However, smart home allows creating much larger actions just triggered with one (virtual or real) bu�on. The

tool for this is called ’Scene’ and the app is shown in Figure 6.3.

The configuration of the scene app is quite straightforward. All devices to be controlled with the “one bu�on” need

to be identified and their desired switching status defined.

The scene itself becomes a virtual device, which is why it is also possible to create a hierarchy of scenes and to let one

scene switch the other scene.

Once stored, there is a new element with the name of the scene as shown in Figure 6.4. There is only one bu�on to

turn on the scene. A scene can never be turned o� but only replaced by a di�erent scene. The reason for this is that

it is not reasonable to turn back to the previous state, since individual devices of the scene may have been operated

in the meantime. The scene element shows the time stamp when this scene was activated the last time. The event

history shows all the events (activations) the scene, much like how it is done on any other Z-Way
™

actuator.

An enhancement for the scene app is the ’Scheduled Scene’ or ’Schedule’, as shown in Figure 6.5. This app

combines the scene function with a simple weekly calendar that allows executing the scene at a special time per day.

56

6 The App System: making it intelligent

Figure 6.4: The Scene Element

Figure 6.5: Schedule - an scheduled Scene

6.2.2 If -> Then

The most basic relationship of automation is the If->Then relationship

Some examples

IF bu�on 2 on the remote control is pressed, THEN the ceiling lamp will turn on. IF temperature sensor

goes above 22◦C ,→ THEN turn down the heating AND open the window.

In order to accomplish this kind of IF→ THEN relationship the following requirements need to be met:

• The actor device needs to be identified and able to perform the desired task.

• The sensor or controller needs to be able to generate an event that causes the action.

• The sensor or controller needs to know which actor to control and in which way in case of an event.

The first requirement is quite obvious. If the ceiling light—to stay in the first example—is turned on, the ceiling light

needs to be controlled by a wireless device that can be turned on and o� wirelessly. While this sounds straightforward,

there are plenty of examples where the actor is not able to fulfill the desired task, e.g. a dimming device cannot change

the color of an LED light.

The second requirement is also obvious. There must be a defined event that causes an action. In case a bu�on of a

controller is involved, this is quite easy, but for sensors that measure constant values, this may become a challenge.

Binary sensors such as door sensors or motion detectors generate an event whenever their binary state changed from

on (window open) to o� (window closed). For a motion detector, it gets more complicated. The motion part, typically

resulting in an ON event is easy to detect but how about the OFF event?

How can a motion detector be sure that there is no person in the room anymore? Most motion detectors allow se�ing

a certain timeout value and generate an OFF event when the time has run out. It is also conceivable to do nothing a�er

a given time. Even then, the motion detector needs to know the minimum time between two events to be generated.

Otherwise, it will constantly generate events, resulting in network tra�ic when a person moves in the room.

Timings and se�ings are typical configuration values of a motion detector and o�en can be changed either locally

using bu�ons and/or wirelessly using the Configuration command class described within the Z-Wave Expert

User Interface in Chapter 7.

Sensors that measure an analog value such as temperature, CO2 level, humidity, etc. cannot generate an event from

just measuring the value. In case the device is used to start an IF (. . .)→ THEN (. . .) association action, it needs to

know certain boundaries of the measured values and what to do if the measured value reaches the boundary value

set. The boundary values that are used to generate events are called Trigger Levels.

The ’If->Then’ app, as shown in Figure 6.6, allows implementing the third condition, the relationship between event

Figure 6.6: If->Then App

57

6 The App System: making it intelligent

Figure 6.7: If->Then App Con�guration Dialog

and action.

Figure 6.7 shows the configuration interface of the ’If->Then’ app. The first step is to device the event. First, select

the device type of the relevant device. This will only shorten the list of devices (elements) to choose next. The device

types are

1. Binary Sensor: These are typically motion detectors, smoke detectors, door sensors, but also alarm conditions

of the device, e.g. power loss.

2. Binary Switch: These are all switches just knowing the state on and o�.

3. Multilevel (Analog) Sensors: These are sensors measuring a certain physical value, e.g. temperature, CO2 level.

4. Multilevel Switches: These are dimmers and motor controls, e.g. for blinds or jalousies.

5. Scene Controller: These are special devices like remote control issuing special scene activation commands. The

specific scene control number must be known.

6. Switch Control (On/O�/Level): These are controlling devices that report a status of the bu�ons, e.g. on or o�.

7. Switch Control / Scene: These are controlling devices that only know one state. Typically, these are bu�ons that

are pressed. The “un-press” is not monitored.

Finally, choose the event that will trigger the ’If->Then’ rule. For devices with a defined number of states (binary

sensor, discrete sensor, binary switch, etc.), reaching this state is the trigger condition. Here it is enough to just pick

the state (e.g. o�). For analog sensors, it must be defined if the event is reached when the measured value is above,

equal, or below a certain trigger value.

Please note that some ba�ery-operated sensors update their value only infrequently. The temperature on a certain

spot may rise. Unless the sensor does not transmit this new value, the ’If->Then’ rule will not kick in.

The second part of the configuration is defining the action. The device and action selection is similar to the IF part.

Choose the device type first, then the specific device (element), and finally the action. The selection of device types

di�ers from the IF section for obvious reasons:

1. Binary Switch: These are all switches just knowing the state on and o�.

2. Color Switch: This allows changing the color on multicolor lights.

3. Door Locks:

4. Multilevel Switches: These are dimmers and motor controls, e.g. for blinds or jalousies.

5. Scene: A scene as described in Section 6.2.1

6. Thermostat: This allows defining the setpoint of a thermostat.

Once saved, the configuration becomes active.

One special function of computers in general, and the ’If->Then’ app in particular, is that it does not necessarily

know what the user thinks but what he configures.

Let us take an example: If the relationship is that—IF the door sensor is open, THEN turn on the ceiling lamp—this

means that the ceiling lamp goes on when the door is opened. When the door is closed, the ceiling lamp will not go o�

because this was not wri�en. If the ceiling lamp goes o�, a second instance of the If->Then relationship is needed. In

case two devices really run synchronously with triggers on and triggers o�, another app can realize this step instead

of having two times the If->Then app. This app is called is called ’Association.’

58

6 The App System: making it intelligent

Figure 6.8: Association App

Figure 6.9: Logical Rule

6.2.3 Logical Rule: If->Then on steroids

’If->Then’ can connect one event with multiple actions including triggering a scene with even more action. However,

it is always one single event. For example, the night light will be turned on by a motion detector but only in the

evening and not during the day. This means that di�erent input variables need to be combined to generate the final

scene-triggering event. The way this combination is achieved is called binary logic or Boolean logic, and the app

implementing this is called ’Logical Rule’ as shown in Figure 6.9. Boolean logic has three basic ways to combine

variables:

• AND

• OR

• NOT

With these three elements, even complex relationships between variables can be described. In case of the evening

light triggered by a motion detector, the definition looks quite simple:

IF (it is evening) AND (Motion detector triggers)→ THEN (activate scene)

It is possible to connect more than two input variables using Boolean logic. However, some constrains need to be

considered.

• The logical combinations, namely AND and OR always combine two variables. If more than two variables are

combined, there is a need to set braces: The statement “A and B or C” has two meanings: (1) always A and then

either B or C, (2) Either a combination of A and B, or just C.

• There is a di�erence between status value and events. A scene can only be activated by one single event, but

this event can be combined with a list of status value. The scene is triggered only if the event happens and

all the other status variables are in the desired status. In case a scene depends on two events, then the trigger

condition is only true if both events happen at the same moment, which is quite unlikely.

A combination of variables therefore always has one single event but is not a limited list of other status values.

Status values are “a�er 17.00” (not right at 17.00, this is an event), a certain switching state of a switch (not the

change of the switching status, this is an event).

Figure 6.10 shows the configuration of the ’Logical Rule.’ The first section allows defining certain conditions (status

or events) and defines if all of them (AND) or just one of them (OR) will trigger the rule.

A condition can also be the result of another combination of statuses and events. This is called “nested condition,”

which allows building a hierarchy of conditions and combining them in any possible way.

The action section is already known from ’If->Then’ of from scenes. The third section, “How the Logical Rule is

triggered,” allows some runtime optimization. By default, any changes in the devices mentioned in the rule will have

the chance to trigger the entire rule. For very large rules, this may consume a lot of power. That’s why it is possible

to limit the number of devices that can trigger the rule. This saves computing power.

6.2.4 Tips and Tricks

Besides the apps ’Scene,’ ’If->Then,’ ’Logical rule,’ and ’Schedule,’ there are a number of other apps in the

app store for special automation functions. One li�le utility is worth mentioning—the dummy device shown in Figure

6.11.

59

6 The App System: making it intelligent

Figure 6.10: Logical Rule

Figure 6.11: Dummy Device

The dummy device creates a virtual switch or dimmer that is shown as an element but does not have any physical

function. Nevertheless, it is a valid source of events and status information as well as a valid device to be controlled

by scenes. Sometimes, this is helpful to visualize certain situations in the home.

6.3 The big apps

While automation apps are more or less a toolbox to implement original ideas of certain automation and dependencies,

the app store also o�ers complex apps for certain typical functions in the smart home that are already finished and

need configuration only.

6.3.1 Leakage Protection

The leakage protection collects all information from leakage sensors in the smart home and generates one single

element to visualize the status of the home. Additionally, the alarm condition is communicated out-of-band. The app

needs to be downloaded from the online server, as shown in Figure 6.12.

The configuration allows picking all flood sensors in the home to trigger an alarm. In case of an alarm, certain actions

can be triggered. The most obvious action would be to turn o� the water supply using a Water Shut O� valve.

Additionally, it is possible to send out a notification. A drop-down list allows picking the desired notifier (email, push,

SMS, whatever is installed) and define the message to send.

Figure 6.12: Leakage Protection App

60

6 The App System: making it intelligent

Figure 6.13: Leakage Protection element - armed

Figure 6.14: Leakage Protection element- alarm

The app creates an element to control the leakage alarm. The element allows arming and disarming the system. See

Figure 6.13 for the element when in the armed status. In case one of the flood detectors detects a leakage, the app

will go into the alarm state:

• The element shows the alarm state (Figure 6.14).

• All actions defined in the configuration dialog will be executed.

• If configured, a notification message is sent using the notifier selected.

• The li�le triangle on the element allows checking which sensor triggered the alarm.

In case the alarm condition disappears (no water anymore), the alarm condition is revoked, but the element will show

that there was an alarm event. This indication is shown in Figure 6.15.

6.3.2 Fire Protection

The fire protection collects all information from smoke detectors in the smart home and generates one single element

to visualize the status of the home. Additionally, the alarm condition is communicated out-of-band. The app needs

to be downloaded from the online server, as shown in Figure 6.16.

The configuration allows picking all smoke detectors in the home to trigger an alarm. In case of an alarm, certain

actions can be triggered. The most obvious action would be to turn on all lights and open the door. Additionally, it is

possible to send out a notification. A drop-down list allows picking the desired notifier (email, push, SMS, whatever

is installed) and defines the message to send.

The app creates an element to control the fire alarm. The element allows arming and disarming the system. See Figure

6.17 for the element when in arm status. In case one of the smoke detectors detects a leakage, the app will go into

the alarm state:

• The element shows the alarm state.

• All actions defined in the configuration dialog will be executed.

• If configured, a notification message is sent using the notifier selected.

• The li�le triangle on the element allows checking which sensor triggered the alarm.

In case the alarm condition disappears (no water anymore), it is revoked, but the element will nevertheless show that

there was an alarm event.

Figure 6.15: Leakage Protection element- wait for clear

61

6 The App System: making it intelligent

Figure 6.16: Leakage Protection App

Figure 6.17: Fire Protection element - armed

Figure 6.18: Security System

62

6 The App System: making it intelligent

Figure 6.19: Security System im disarm status

Figure 6.20: Security System im arm status

6.3.3 Burglar Alarm System

Security is one of the most frequently used functions of the smart home. The smart home can replace the tradi-

tional alarm system and implement the function using dedicated devices or reusing other devices such as e.g. motion

detectors that were primarily installed for di�erent reasons.

The app ’Security Module’ implements a complete alarm system with all the functions known from conventional

alarm systems. The app must be downloaded from the online server, as shown in Figure 6.18.

The configuration interface allows managing di�erent lists of devices:

1. Devices that can trigger the alarm: These are all the sensors that will indicate a burglar in the home. These

include door sensors, motion detectors, tamper switches, glass break sensors, etc. Per device the app allows

selecting what sensor state will trigger the action.

2. Devices that can arm/disarm the system and clear alarms: Of course, it is possible to arm/disarm and clear

alarms using the user interface. However, most alarm systems are armed/disarmed using bu�ons, keypads, or

even smart home scenes (e.g. “I am leaving home” or “I am sleeping”). For example, a simple switch can be used

to arm or disarm the alarm system. This is not safe but doable. Per device an arm, a disarm, and an alarm clear

status or event can be defined.

3. List of actions on alarm. This can be turning on lights, starting SONOS, switching a siren, and of course trig-

gering a notification of choice.

4. List of “arm” status indicators: Once the alarm system is armed, there will be some visible indication, besides

the element on the user interface, that the house is armed. This could be some red lighting or some slow glowing

LED light.

5. List of “disarm” status indicators: Similarly, there can be devices that indicate that the alarm system is disarmed,

e.g. with a green light.

6. List of actions when the alarm is cleared:

The last section of the configuration allows defining time-driven arming and disarming of the system.

The security app creates an element to control and manage the alarm system. The element allows arming and dis-

arming. Figure 6.19 shows the alarm system in the disarm state. Once armed, the icon turns blue for some seconds,

indicating that the alarm is turned on but the alarm system is not yet fully armed. This is important as it allows users

to leave the home a�er they have armed the system. Any sensor in the list of triggering devices will put the system

in alarm state once triggered. This results in

• The element shows the alarm state with the red icon, as shown in Figure 6.21.

• All actions defined in the configuration dialog will be executed.

Figure 6.21: Security System in alarm status

63

6 The App System: making it intelligent

Figure 6.22: Climate Control App

Figure 6.23: Climate Control App Element

• If configured, a notification message is sent using the selected notifier.

• The li�le triangle on the element allows checking which sensor triggered the alarm.

Even if the triggering sensor goes back into the non-triggering state, the alarm conditions remain active. The alarm

must be cleared by one of the devices configured or clicking on the alarm clear bu�on (two arrows). The system

then goes back into the arm state, as shown in Figure 6.20. The clock icon will activate the time-driven arming and

disarming of the alarm system.

6.3.4 Climate Control

Saving energy by having intelligent heating and climate control is one of the core values of the smart home. Of course,

it is possible to directly control thermostats, but the ’Climate Control’ feature manages the whole home and o�ers

a lot of options.

The app must be installed from the app store as shown in Figure 6.22.

The climate app operates on various levels. First, there is a time-driven weekly schedule per room that defines the

temperature in that room. The time-driven schedule should be the normal operation mode of the climate control

feature. A second layer is the manual overwrite of the temperature. This overwrite can be done on a room layer as

well as on the whole home layer.

The first two values are of general nature. The setback temperature is the temperature di�erence between the comfort

temperature in a room and the energy-saving setback temperature in this room. Since di�erent rooms may have

di�erent comfort temperatures, the energy-saving temperature also di�ers but always by the same delta. In case of

doubt, please insert 4 Kelvin, which is a commonly accepted value.

The automation reset time defines when the normal automated heating schedule is used again a�er a manual over-

write of this schedule. The preset 2 hours is a good value.

Now there is a list of rooms. Just add your rooms you want to have the climate control feature. Per room you can

define a temperature sensor that shows the temperature in this room in the climate control user interface. There is

no further function of this sensor than showing the value in a convenient way. Please note that the dropdown list

will only show temperature sensors that are assigned to this room. The comfort temperature is the room-specific

temperature. Usually it is higher in bathrooms than in sleeping rooms. Your individual preference ma�ers here.

The last section of the configuration dialog is the heating schedule. It allows se�ing a temperature at certain time

slots on certain days per week for certain rooms.

As shown in Figure 6.23, the app generates a special element. It allows running the climate control for the whole home

in three basic modes:

• The heating in the home is turned o�. This will overwrite all schedules and all se�ings in every room.

64

6 The App System: making it intelligent

Figure 6.24: Climate Control App Element - room view

Figure 6.25: Email App

• The heating in the whole home is in the energy-saving mode. This will overwrite all schedules and all

se�ings per room.

• No home-wide overwrite. The room-specific se�ings apply.

The li�le triangle on the right-hand side allows opening the room view as shown in Figure 6.24. Here, it is possible

to see the actual temperature per room plus the current desired temperature. A dropdown list allows choosing the

heating mode for the specific room:

• Frost Protection: The room is in the frost protection state (around 8 degrees C).

• Energy Save: The room is in the energy-saving state. This is the comfort temperature minus the setback

temperature di�erence defined in the configuration dialog.

• Comfort: The room is in comfort temperature as defined in the configuration dialog.

• Time driven: The heating schedule as defined in the configuration dialog applies.

6.4 Out-of-band notifications

All events in the smart home are shown in the user interface, or they can be indicated using devices inside the home.

However, people do not always monitor the user interface. Hence, there are the so-called out-of-band notification

options to reach the user in such a case:

• Email

• SMS

• Push notifications right on the home screen of the mobile phone

• voice call

Z-Way
™

supports various ways of out-of-band communication. For every communication channel, multiple apps

from di�erent providers may exist to realize the same function. However, all these notifiers work in the same manner:

• They establish an out-of-band communication channel.

• They need to be configured according to the user’s preferences.

• They accept messages from other apps and forward them as configured.

• They create an element with a push bu�on to send a simple test message.

Some out-of-band notifiers make it possible to gather and filter events from the timeline and forward them. This must

be configured in the configuration dialog.

6.4.1 Push Notifications

Push notifications are delivered to a mobile phone. As soon as one of the native Z-Way
™

apps is installed on the

mobile phone, the push notification option is automatically enabled. Push notifications allow gathering events and

forwarding them automatically. This can be configured in the app ’Mobile Phone Support,’ which is already

running in the system. Please go to Active app management to open the configuration dialog.

’Mobile Phone Support’ can handle multiple mobile phones in parallel. Every mobile phone connected will create

a new element on the element view.

6.4.2 Email ME

The email app, as shown in Figure 6.25, allows sending emails to addresses that are already assigned to a user. To

prevent spamming, it is not possible to send mails to mail addresses not assigned. Furthermore, there is a mail quota

to prevent misuse of the service to annoy people.

65

6 The App System: making it intelligent

Figure 6.26: Apple Homekit Integration

Figure 6.27: Intchart.com Integration

Every instance of ’Email Me’ has its own email target address and creates its own element in the element view.

This element can be used as any normal actuator in the Z-Way
™

system. It can act as an actuator for the If->Then

relations or be a part of a scene, etc.

6.4.3 Other notifiers

Besides the two standard notifiers for push notifications and email, the app store has plenty of other notification apps

from third-party developers. Just check out what works for you.

6.5 Useful tools and utilities

The app store is a gold mine of cool applications. This manual can only mention a few of the more popular ones. Of

course, you can check out the display of apps according to popularity, etc.

6.5.1 Apple HomeKit

As shown in Figure 6.26, the Apple Home Kit App, provided by a third-party programmer named Andreas Freud,

connects Z-Way
™

with Apple’s HomekitWorld. Once installed, the Z-Way
™

controller is shown to Apple as a Homekit

bridge device. Please be aware that this app is maintained by a third-party developer and the existence of the apps is

certainly not in the main interest of Apple.

66

6 The App System: making it intelligent

Figure 6.28: Astronomy App

6.5.2 Intchart.com

This app (Figure 6.27) adds a li�le icon to the selected device. Clicking on this icon opens a window with a chart

showing its history. To use this app, you have to be registered at www.intchart.com. Note that if you change the

se�ings below, the chart can be reset, but the previous chart will still be visible on intchart.com.

The se�ings are as follows:

• First, register at www.intchart.com.

• Below that, select the devices to track.

• Indicate if they have to be on the same chart.

• Indicate if you want to have a di�erence between values (for energy consumption, etc.).

• Choose the poll period.

• Paste the API user ID and API key from your account: www.intchart.com.

6.5.3 Astronomy App

This app (Figure 6.28) from Maros Kollar calculates the position of the sun above the horizon for the given location.

The module provides various metrics for other automation modules like sun altitude and azimuth, and emits events

when the sun reaches certain positions. This module can be used to control light scenes or shading based on the solar

position.

Check github.com/maros/Zway-Astronomy for detailed documentation.

6.5.4 Alexa Integration

This app in Figure 6.29 integrates Z-Way
™

with the Amazon Alexa Voice Control system. Once installed, you need to

activate the “skill” in the Alexa user interface before using.

6.5.5 Philips Hue Integration

HUE is a new way to use your Philips Hue SmartHome solutions. Use this app (Figure 6.30) as a remote to switch

colors, turn up the brightness, and quickly toggle between lights on and o�. For the moment, you have to create your

credential manually.

Installation instructions:

• Go to h�p://YourBridgeIpAddress/debug/clip.html

• Enter {d̈evicetypë:S̈martHome#RasberryPi Zway
¨
} in MessageBody part.

• Go and press the bu�on on the bridge.

• Press the POST bu�on on clip.html page and you should get a success response.

• Congratulations you have just created an authorized user (like: 1028 d66426293e821ecfd9ef1a0731df), which

we’ll use from now on.

• Fill your key in the Hue app!

To create your own key, see more details on:

• www.developers.meethue.com/documentation/ge�ing-started

67

6 The App System: making it intelligent

Figure 6.29: Amazon Alex Integration

Figure 6.30: Philips Hue Integration

• h�ps://github.com/timauton/Hue

6.6 For Developers

Apps for developers require a certain amount of programming skills and partly require knowledge about the Z-Way
™

data model. Please refer to Chapter 11 for details.

Nevertheless, the app ’HTTP’ device allows adding certain functions without deep so�ware knowledge. The ’HTTP’

device generates a sensor or an actor depending on information obtained by just accessing a website using HTTP.

One example will demonstrate this. The goal is to make an element that shows the current USD/EUR exchange rate.

The website

http://api.fixer.io/
o�ers this data free of charge. Even more conveniently, the URL

http://api.fixer.io/latest
delivers information in a machine-readable JSON format (you can use the URL in a standard web browser to have a

look at the structure.)

Figure 6.31: HTTP device

68

http://api.fixer.io/
http://api.fixer.io/latest

6 The App System: making it intelligent

Figure 6.32: HTTP device - Con�guration dialog for currency exchange “sensor”

Figure 6.33: Currency Exchange Element

In the h�p device configuration, a multilevel sensor is chosen, since only values have to be shown and they are not

only 0 and 1. Then the URL api.fixer.io is provided (a�ention, without h�p!). This will now call the whole JSON data

set. For the element, the right value needs to be extracted. Here some JavaScript knowledge is needed to understand

the command

“$$.rates.USD.”

Finally, the refresh rate is defined and a nice name given. The other form elements are not needed here. A�er saving

the configuration, the new element is visible. A li�le optimization is to show the cent value by changing the JavaScript

into

“parseFloat($$.rates.USD)*100.”

The sensor based on the exchange rate can now be used like any other analog sensor. Se�ing a trigger on certain

exchange rates may be used to activate a special scene. Indeed, this is more for day traders on EUR/USD exchange,

but may still be cool.

69

7 The Z-Wave Expert User Interface

The Z-Wave Expert User Interface is designed for installers, technically savvy people, and other users that know

how to build and maintain a Z-Wave-based wireless network. Hence, it uses some Z-Wave specific-language and

o�ers detailed insight into the work and data structure of the Z-Wave network. It allows users to:

• Add (include) and remove (exclude) Z-Wave devices and manage the network.

• Configure Z-Wave devices.

• Operate Z-Wave devices.

• Manage Associations between wireless devices.

• Access all data generated by the devices and perform all kind of functions and actions to the device.

• Look behind the scene into the data structures, routing mechanisms, and timings of the Z-Wave control stack.

This is particularly useful for debugging and so�ware development.

The Z-Wave Expert User Interface does not provide any access to a higher order business logic and automation.

Please refer to the Z-Way Smart Home Interfacefor these functions. The user interface o�ers a home screen and five

top menu items:

• Control : Access to functions of the wireless devices included in the network

• Device : Access to information about devices

• Configuration : Configure the devices a�er inclusion if needed

• Network : Add and remove devices and manage the network

• Analytics : Allows debugging the wireless network (Please note that this mean item is only shown and its corre-

sponding functions are unlocked in the transceivers firmware

Besides the menu items, there is a configuration se�ing (wheel icon), a time indicator showing the time at the time

zone of the gateway and a job queue indicator. Clicking on this job queue indicator opens a new tab displaying the

job queue of Z-Way
™

. Please refer to Chapter 7.8 for more information about the job queue.

All values shown in the Z-Wave Expert User Interface are assigned to a time stamp indicating when the value of

status information was received from the wireless network. A red color of the time stamp indicates that the update

request from the controller to the device for this value is pending.

7.1 Home Screen

The home screen shown in Figure 7.1 o�ers some high level of information about the so�ware and a notepad where

the user or installer can leave important information for future use.

The section ’Network Information’ box o�ers some statistics about the number of devices in the network and how

many of them are mains or ba�ery-operated. The network health box will list devices that have problems:

• Low ba�ery.

• Incomplete interview.

• Device failed.

• Inconsistencies on Association se�ings.

Clicking on the statement will lead to a help page explaining the problems and giving guidance for remediation.

The last infobox will contain information about devices that were removed using the device reset function. In this

case, the device will leave the network but informing the controller. There is no exclusion process applied.

7.2 Control

The tab Control allows operating the various types of device and shows the reported values in case of sensors or

meters. In case the control options o�ered here are not su�icient, please refer to Configuration Expert Command for a

full set of functions supported by the device.

7.2.1 Switch

The switch dialog shown in Figure 7.2 lists all devices of the network supporting switching, dimmer, or motor control

capabilities. The device name and Z-Wave ID, as well a the current status of the switch, are given and the time of the

last status update. The Update bu�on forces an immediate update of the switch (if mains powered device). A ’Switch

70

7 The Z-Wave Expert User Interface

Figure 7.1: Sceenshot of the Expert User Interface Home Screen

Figure 7.2: Control Interface for Switches, Dimmers and Motor Controls

71

7 The Z-Wave Expert User Interface

Figure 7.3: Control Interface for Sensors

Figure 7.4: Control Interface for Meters

All’ Icon shows whether or not the specific device will react to a All ON or All O� command. A green triangle indicates

that the device will react to the command shown. All actuators can be switched on or o�. Dimmer and motors controls

can be operated using a slider. For dimmer, there is a bu�on On and Full . Full turns the dimmer always to 100 %,

diming value while On turns to the last dimming state before the dimmer was turned o�. Clicking on the table heads

reorders the table view of the data.

7.2.2 Sensors

The sensor dialog shown in Figure 7.3 lists all devices of the network providing sensor information. Device name and

ID, the type of the sensor, the actual sensor value and the sensor scale is listed. The date/time column indicates when

the given sensor value was received. It’s possible to call for a sensor update but bear in mind that ba�ery-operated

device will only respond a�er the next wakeup.

7.2.3 Meters

The meter dialog shown in Figure 7.4 lists all devices of the network providing (accumulating) meter information.

Device name and id, the type of the meter, the actual meter value and the meter scale is listed. The date/time column

72

7 The Z-Wave Expert User Interface

Figure 7.5: Control Interface for Thermostats

Figure 7.6: Control Interface for Locks

indicates when the given sensor value was received. It’s possible to call for a meter update but bear in mind that

ba�ery-operated device will only respond a�er the next wakeup. Clicking on the table heads reorders the table view

of the data. A meter reset bu�on is shown for device supporting this function.

7.2.4 Thermostats

The thermostat dialog shown in Figure 7.5 lists all thermostat devices of the network. Device name and ID and the

current set point temperature is shown. The date/time column indicates when the given set point temperature was

transferred to the device. The set point temperature can be changed using the + or - bu�ons or the slider. Clicking

on the table heads reorders the table view of the data.

Some thermostats may o�er di�erent modes such as heating, cooling, o�, etc. For these devices, a drop-down list

shows all modes available. In this case, the setpoint is only valid for the mode selected.

7.2.5 Locks

The door lock dialog shown in Figure 7.6 lists all door lock devices of the network. Device name and ID, the current

status of the lock, and the last time of the change of the status are listed. The lock can be opened or closed. Clicking

on the table heads reorders the table view of the data.

7.2.6 Notifications

The notification dialog shown in Figure 7.7 lists all notification devices. Notification devices act like binary sensors,

albeit o�ering some more capabilities. Per notification device multiple events can be reported. The notification device

also allows deactivating the notification for certain events. Please note that not all devices make use of these functions.

7.3 Device

The menu Device gives access to overview pages with more detailed information about the devices in the network and

their actual status.

7.3.1 Status

This dialog in Figure 7.8 shows the actual network status of all devices. All devices are listed by their node ID and

name. The date/time indicates the time of the last successful communications between the controller and this device

73

7 The Z-Wave Expert User Interface

Figure 7.7: Control Interface for Noti�cation Devices

Figure 7.8: Device status overview

74

7 The Z-Wave Expert User Interface

Figure 7.9: Device information overview

(either confirmed sending or reception). The green checkmark indicates that the device is alive. A red sign indicates

that the controller assumes the device not being active anymore. Mains powered devices can be checked for their

network availability by hi�ing the o bu�on on the right-hand side.

In case the device interview and configuration were not performed properly, a li�le question mark icon will indicate

this. Clicking on the question mark will open a window displaying the details of the interview process. The correct

loading of a Device Description File
1

is indicated as well. For a ba�ery-operated device, the time of the last wakeup,

the time of the next wakeup, and the current wakeup status are shown. Clicking on the table heads reorders the table

view of the data. Clicking on the table heads reorders the table view of the data.

7.3.2 Type Info

The type info dialog shown in Figure 7.9 lists all devices of the network and indicates if they support enhanced Z-Wave

functions such as Security and Z-Wave Plus. Additionally, the Z-Wave protocol version, the application version and

the device type indicator of the device is shown.

The security icon determines what kind of security the device supports:

• : Device does not support any security class

• : Device supports security version 1

• : Device supports security version 2

• : Device supports security version 2 but authentication failed

The last column shows the security keys granted for the device.

Clicking on the table heads reorders the table view of the data.

7.3.3 Ba�ery

This dialog shown in Figure 7.10 gives an overview of the ba�ery status of the ba�ery-operated devices in the network.

Devices are listed by name and id. The last reported ba�ery level (0–100 %) including update time is shown as well as

the number and type of ba�ery if known. The Update All bu�on will request a status update from the device. The new

status will be available a�er the next wakeup of the device. Clicking on the table heads reorders the table view of the

data.

7.3.4 Active Associations

This overview page shown in Figure 7.11 lists the current association set in the network. The Lifeline is an association

to the gateway to report status changes and heard beat and can be hidden if needed. A Change bu�on leads right to

the configuration page of the device to change association se�ings.

1
For more information about Device Description �les, please refer to Section 7.4.1.

75

7 The Z-Wave Expert User Interface

Figure 7.10: Battery status overview

Figure 7.11: Active association overview

76

7 The Z-Wave Expert User Interface

Figure 7.12: Device interview

7.4 Configuration

The tab Configuration allows configuring the functions of a particular device. Pick the device to be configured from

the drop-down list or pick the device from the full list shown on the le�-hand side. The functions of the device are

grouped into 6 tabs.

7.4.1 Interview

Configuration Interview , as shown in Figure 7.12, documents the result of the device interview. In this process, the

controller tries to get information about the device. In case the controller finds a device description record for the

device, it will display further information about the device that cannot be obtained from the device itself:

• Product Image

• Information regarding how to include the device

• Information for ba�ery-operated devices about how to wake them up manually

• Human-readable meanings of configuration parameters and values

If the so�ware will not automatically recognize the device and load the description record a bu�on Select Device Description Record

allows doing this manually. However, the description file must be present. Chapter 13.3 gives further information on

how to create an own Device Description Record and load it into Z-Way
™

.

The interview stage line gives information about the progress of the device interview.

There are a few reasons why an interview is not complete: In most cases the devices went to deep sleep too early to

have some wireless connectivity problems. The bu�on Force Interview allows re-doing the whole interview. The bu�on

Call for NIF requests a Node Information Frame from the device and the Bu�on View Interview Result allows displaying the

information about the di�erent command classes found during the interview. It is also possible to force the interview

of a certain command class only.

The bu�on ZDDX Code Creator allows creating an XML description file usable for certain device databases.

The only configuration option on this tab is to change the given name of the device. During inclusion, the so�ware

generates a generic name, but it is highly recommended to change this name. The given name should be descriptive

but not too long.

7.4.2 Configuration

Configuration Configuration shown in Figure 7.13 allows configuring the device. If the specific device was recognized

correctly the di�erent configuration values are translated into human-readable dialogs. Every configuration comes

with standard dialog options:

• Time Stamp, when the configuration value was last updated

77

7 The Z-Wave Expert User Interface

Figure 7.13: Con�guration - convenient view

• Set Value as integer

• Information about the default value of this particular parameter

• Bu�on to reset to default value given by the device itself

• Bu�on to save the parameter into the device

If the device is not known (means there is no Device Description File assigned to it) it is still possible to set configuration

values. Figure 7.14 shows the generic configuration dialog used in this case. The specific configuration parameters

and its values need to be read from the device manual.

There are four more command classes that may need additional configuration and are displayed in the same dialog

if the device supports them.

• Wakeup: Define the wakeup interval and the node is of the main controller taking care of the wakeup sequence.

The controller will set a standard wakeup time of 1800 seconds unless the devices sets a di�erent minimal or

maximal wakeup time. In most cases the node ID of the controller is the correct se�ing for the target node ID

and should not be changed. In case this controller is only a secondary controller, this value may change. A tool

tip on the input field shows the allowed minimum and maximum wakeup time as reported by the device.

• Protection: In case the device supports local protection, meaning suppressing local use of the device, the be-

havior of this function can be defined. The protection command class o�ers more options than displayed here.

Refer to the Configuration Expert Commands tab for a complete set of controls.

• Switch All configuration: Z-Wave supports the so-called switch all function as a broadcast to all switches and

dimmers. This setup defines the reaction of the device to such a Switch All command. The se�ing is also displayed

in the Control Switches section as li�le gray/green icon.

Note: For mains-powered and FLIRS devices, the bu�on Save this parameter or Save into Device will activate the changes

within few seconds. For ba�ery-operated devices, the commands are stored to the next wakeup. It’s possible and

recommended to wake up the device manually to speed up the change of configuration values.

7.4.3 Association

Associations allow switching a Z-Wave Device B (target) as a result of an event in Z-Wave Device A (source). Z-Wave

Device A manages a list of devices to be controlled for each event supported. The device list associated to a specific

event—also called association groups—and the devices that are associated with it are shown in the association tab in

Figure7.15.

In case the information is provided either by the device or by the device record stored in the so�ware, the meaning of

the events is wri�en. Otherwise, the event group is shown unnamed as number only. In this case, refer to the devices

manual for more information about the association group meaning.

The stored devices can be called from the actual device using a bu�on. The bu�ons +/- used to add and remove

device from the group. A dialog is opened and a device can be picked. In case this device has multiple instances, an

78

7 The Z-Wave Expert User Interface

Figure 7.14: Con�guration - generic view

Figure 7.15: Association dialog

79

7 The Z-Wave Expert User Interface

Figure 7.16: Link health

instance drop-down list will appear allowing to choose the right instance of the target device. The node ID and—if

applicable—the instance ID are shown in the target device list. Move the mouse over the ID to show the complete

given name of this device. The color of the device name or ID indicate the status of the association entry:

• Yellow: Selected in user interface but not stored in device.

• Grey: Active in device but not selected in user interface.

• Blue: Selected in user interface and stored in device.

7.4.4 Link Health

Modern versions of Z-Wave allow testing the quality of a link between two devices in direct wireless range. The

dialog shown in Figure 7.16 lists all devices in wireless range and gives an indication about the quality of this link.

The following colors are used:

• grey: untested

• green: good quality

• yellow: reasonable quality

• red: link quality insu�icient

Individual links can be retested using the Test all links bu�on. It is also possible to test all links from a given device.

However, please keep in mind that this process may take several minutes to complete.

7.4.5 Expert Commands

Configuration Expert Commands as shown in Figure 7.17 displays the status values and possible commands in a very

generic way. On the le�-hand side, the di�erent instances (channels) of the device are listed in a column. In case there

is only one channel (that’s the case for most devices), only channel/instance 0 is shown. Clicking on the number opens

a dialog showing all internal variables for the channel. The next column shows all the command classes exposed by the

device. Again, clicking on the name opens a dialog with more internal status variable information for this command

class. On the right-hand side, there is a list of commands. This dialog form is auto-generated from the information

provided by the command class itself and not optimized for daily usage.

7.4.6 Firmware Update

In case the device supports a firmware update “over the air,” this dialog is shown to perform such a firmware update.

The firmware file to be uploaded must be available in a raw “BIN” or the Intel hex “HEX” file. The target field allows

specifying the target memory/processor for the update process. For updating the Z-Wave firmware part a “0” must

be set. The firmware updating process will take up to 10 minutes. Please don’t do any other operation during this

time. It may be required to activate the firmware update mode on the device to be updated. Please refer to the manual

for further information about activation.

80

7 The Z-Wave Expert User Interface

Figure 7.17: Experts commands

7.5 Network

The network section of the user interface focuses on the network as such and o�ers all controls and information to

build, manage, and repair the wireless network of the controller.

7.5.1 Control

Network Control summarizes all commands needed to manage the network and the controller. The page is structured

in four boxes.

Device Management

The device management box as shown in Figure 7.18 allows including and excluding Z-Wave devices. A status display

shows the status of the controller. The Include Device and Exclude Device bu�on turn the controller into the Inclusion and

Exclusion mode. In this case the status display changes and the resp. bu�ons turns into a Stop function. The inclusion

and exclusion modes will time out a�er about 20 seconds but can always be terminated using the Stop bu�ons.

Another way to stop the inclusion mode is to actually include a new device. In this case the inclusion mode will stop

and the node ID of the new device is shown. The controller generated a default name of the device as combination

of its primary function and the new node ID. Clicking on this default name leads to the Configuration page where the

name can be changed and other configuration tasks can be performed.

Please refer to the devices manual on how to do an inclusion. In case the inclusion does not work as

expected, please exclude the device first. More than 90 % of all inclusion problems are caused by still

included in a di�erent network and can then not being included again.

The Exclusion mode also stops when one device was successfully excluded. This function can exclude devices from

other networks too but the device need be available and functioning. To remove nonfunctioning or disappeared devices

please refer to Replace Failed node or Remove Failed node.

In case the new device supports enhanced security function (Security Command Class), this controller will include

the device securely. A�er this all data exchange between the controller and the new device is encrypted using AES

encryption. For performance reasons, it mays be desired not to use the security function. The slider Force unsecure inclusion

turns the controller into a mode where all security functions are suppressed for the included device. Security functions

of other devices are not impacted. In case the new device supports Security S2 right a�er inclusion, a pop-up window

81

7 The Z-Wave Expert User Interface

Figure 7.18: Network Management

82

7 The Z-Wave Expert User Interface

Figure 7.19: Z-Wave Expert User Interface - S2 key selection

Figure 7.20: Z-Wave Expert User Interface - S2 key display

will appear asking the user to grant the S2 security keys. A few basics about this process: Security in Z-Wave means

among others that all communication between two nodes over the air is encrypted. Encryption however requires a

key to encrypt and all the device communicating shall have the very same key—usually called network key. Z-Wave

Security 2 handles 4 di�erent network key. They di�er by their level of trust.

• S0:The network key is needed to communicate with a device capable of Security CC Version 1. Hence, this is

more for backward compatibility.

• S2 Unauthenticated: The device-specific key of the device included is not verified. In case the device has its key

(as PIN number of QR Code) on the enclosure, it is possible to compare the two numbers but the key assignment

does not verify this choice.

• S2 Authenticated: Right a�er inclusion, the device-specific key (as a PIN or AR code) must be manually provided

to the included controller in order to verify the identity of the device just included.

• S2 Access Control: This key requires similar authentication than S2 authenticated. This additional key is pro-

vided to separate control of door locks and other access devices from other devices.

Each device will request one of more network keys according to the device usage and implementation idea. The default

key is likely S2 Authenticated but Door Locks will ask for S2 Access control and small devices without external label

request S2 Unauthenticated only. Figure 7.19 shows the dialog to grant the keys. The requested key is displayed in

bold le�ers. The user has 20 seconds to select the keys to be granted. If no selection is made with 20 seconds, the

process will time out and the device is included unsecure. Please note that some devices may still o�er valid functions

while other will deny any function outside a secure environment. It is recommended to grant the keys requested, but

there may be certain environments where other selections may make sense.

Once the selection is made before timeout a second window will request the authentication of the device. In case of

S0 or S2 Unauthenticated, the window displays the device-specific key for information only as shown in Figure 7.20.

If a key is visible on the device, it is recommended to compare the numbers. However, the key is granted without any

further interaction by the user.

In case S2 Authenticated or S2 Access Control keys were requested the dialog windows asks for providing the Device

information by the user. This can be done by typing in the 5-digit PIN code (first 5 numbers of the device-specific key)

as shown in Figure 7.21 or by scanning the QR code on the device shown in Figure 7.25.

In case of Access or Authentication, the user must insert either a PIN number or scan a QR code from the device just

included. This insures 100% that the device just included is really the device in hand. If authentication fails, an error

message is displayed. It is not possible to redo the key authentication only. You must exclude and re-include the

device.

83

7 The Z-Wave Expert User Interface

Figure 7.21: Expert User Interface - S2 authentication

Figure 7.22: Smart Start - enter Device Key (DSK)

Smart Start

Smart Start is a new way to include devices into Z-Wave using the QR code provided with S2 authentication. The user

scans the QR code thats is stored in an internal so called provisioning list. Smart Start Devices will then announce to

be included when powered up. In case the S2 key is in the provisioning list the controller will automatically include

this new device without any further user interaction.

Smart Start is controlled by the bu�on Activate/Deactivate Smart Start . The bu�on Smart Start opens a submenu allowing to

register Device keys either by typing the 8 groups of numbers as shown in Figure 7.22 or using a QR code scanner

as shown in Figure 7.23. Please note that a standard web browser running on a standard PC may not provide the

capability to scan QR codes.

Figure 7.24 finally shows the lost of Device keys already registered in the system and not used. Used means in this

context that the corresponding device was powered up in proximity of the controller and got included automati-

cally. Please note that the Razberry Shield or UZB or any hardware used must provide a firmware with SDK >=6.81.

Otherwise Smart Start will not work.

Enter/Leave di�erent Network

This bu�on will only be active if Z-Way
™

is in factory default state. Only in this case the controller can be added to

a di�erent network as secondary controller. The controller of the other network must be in either the Inclusion or in

the Exclusion mode, and the Learn bu�on confirm the process.

In case the new primary controller supports Security S2 a dialog window will pop up right a�er finishing the inclusion

Figure 7.23: Smart Start - scan QR code (on smart phones only

84

7 The Z-Wave Expert User Interface

Figure 7.24: Smart Start Provisioning list

Figure 7.25: Z-Way™ - own key for authentication

by the new controller. This dialog window will show the PIN number and the QR Code of this Z-Way
™

controller

needed to authenticate against the new controller.

The Start Change Controller function actively hands over the role of the primary controller of the network to a controller that

will be included using the normal inclusion process. The controller status dialog shows the mode and its termination.

Backup and Restore

The next dialog box of the page allows creating and using a backup. The backup file is stored on the local computer.

Please note that any restore will overwrite the existing network. The restore operation must therefore be confirmed

in another message box. A checkbox defines if the node information in the Z-Wave chip itself will be overwri�en as

well. This operation result in a possible loss of all network relationships and may require a re-inclusion of devices.

Handle with care!

Controller Maintenance

The controller maintenance o�ers two reset bu�ons. The Z-Wave Chip Reboot restarts the operating system of the Z-Wave

transceiver chip. This can be done safely all the time.

The Reset Controller turns the controller back into factory reset. All connections to included devices and all configurations

and se�ings are lost. This function must be handles with extreme case. An additional dialog requires to explicitly

confirm the function. Only use this function if you know what you do!

Operating Frequency

This dialog allows changing the operating frequency. Please note that a wrong frequency will block all Z-Wave

tra�ic and make the device inoperable. Frequencies can only be changed within one frequency group. These are the

frequencies shown side by side (e.g. EU, RU, IN, ...). Changing to a frequency outside this group will technically work

but the wireless range will be few centimeters only. Hence, this for workbench testing only. The device will reboot

a�er a frequency change so please allow some time for restart.

Network Maintenance

The function Remove Failed Node allows removing a node that is no longer communicating with the controller. A�er

multiple failed communications with a device the controller will mark this device as failed and avoid further commu-

nication. This function finally removes such a device from the network configuration. The drop-down list will only

show IDs of failed nodes. If this list is empty this is a good sign!

85

7 The Z-Wave Expert User Interface

Figure 7.26: Neighbors

It is also possible to Replace a Failed node with a new node. This is a combination of removing the failed node and adding a

new node. Using this function makes sure the next included node has the same node ID as the failed node. The drop-

down list will only show IDs of failed nodes. If this list is empty this is a good sign! Ba�ery-operated devices are mainly

in deep-sleep state and will not answer to communication requests. Hence, the controller will never automatically

detect if a certain device is defect or gone. The function Mark ba�ery device as failed manually marks ba�ery-operated

devices as failed so that they can be removed or replaced. The drop-down list shows all ba�ery-operated devices but

this does not mean that they are failed.

The Request NIF from all devices function is just a convenient way to retrieve a Node Information Frame from all devices of

the network.

SUC/SIS Management

The SUC/SIS Management pane allows manipulating the self-organization of the Z-Wave network. Don’t use this

unless you are a developer who knows when and why this is needed for testing purposes.

7.5.2 Neighbors

This table in Figure 7.26 shows the neighborhood relationship of devices. The id, the name and the type of the node

are listed. Green indicates that the two devices are in direct wireless neighborhoods and don’t need any other device

to forward their signals. A red color between two nodes indicated that routing is needed between these devices. The

Update bu�on calls the device to scan its neighborhood and report back the result to update its own line of the routing

table.

7.5.3 Reorganization

The reorganization page controls as shown in Figure 7.27 an algorithm that reorganizes the network relationships and

fixes problems. With checkboxes various stages of the algorithm can be selected. The result of the reorganization is

shown in a log and can be downloaded. The network reorganization calls for every node to redetect its neighbors.

This operation will work if there is a working route to this device and this device is not sleeping. If the operation fails,

the algorithm will have three more a�empts to reflect possible routes to the very device that may be reestablished

during the reorganization. Detection of neighbors for ba�ery-operated devices will be started a�er all mains-operated

devices are processed. The requests to ba�ery-operated devices will be queued. For more information about job

queuing, please refer to Chapter 7.8.

86

7 The Z-Wave Expert User Interface

Figure 7.27: Reorganization

7.5.4 Network Map

The Poltorak-Chart as a way to map the network is an extremely powerful, informative but the same time very

complex viewgraph of the network situation in a home. The chart visualizes the possible links between the nodes and

how they are used. If provided by the devices the chart will furthermore show complete routes and the signal strength

of the individual links of a route. However only devices with SDK greater or equal to 6.71 will provide this additional

information.

Initially all nodes are displayed with equal distances. It is possible to drag and drop the nodes to match the distances

between them with the real distances. This will always work quite well if the Z-Wave network is in one floor only.

A 2D map can be uploaded as background image to support the mapping. If the network is distributed on multiple

floors it is recommended to do a best guess to keep the round initial view.

Figure 7.28 shows a typical chart. By clicking on a certain node and then moving the mouse over it again, it is possible

to analyse the tra�ic from and to this very node. This allows focusing on the situation of this node only.

The lines between the nodes represent the wireless connections and the communication between the nodes. The

following information is encoded in these lines:

• Color: The color indicates the wireless signal strength of the connection if it can be measured. Red means a very

high wireless signal. The device is likely very closed or in direct sight of the each other. A black color means a

standard wireless strength, gray indicates that the received signal strength (RSSI value) is not known.

• Thickness: The Thickness of the line indicates the amount of tra�ic running over this line. This can be direct

communication between the two links or routed tra�ic. If a route exist there will be a single pixel line. Every

line thicker than a pixel shows real tra�ic.

• Do�ed versus solid: A do�ed line indicates that this link is sometimes just not working.

7.5.5 Timing Info

The Timing tab in Figure 7.29 shows some very valuable timing information of communications between the con-

troller and other devices. All other devices the controller has communicated with are shown in a list. The number of

packets and the percentage of successful communication are shown. This can give an indication about the stability

of the communication link between the controller and this device. On the right-hand side, the timing delay of each

communication is shown and color-coded. A red number indicates that this communication finally failed. A com-

munication without rerouting a�empts as shown as green and a rerouting a�empt is coded in black. The fact that a

communication failed (red) may indicate that there is a severe problem in the network or in the device. It is however

also possible that a ba�ery-operated device just went back to sleep too fast. Z-Wave professionals can read a lot

out of this timing information particularly when combined with the routing table. Please refer to Chapter 8 for more

details on troubleshooting Z-Wave networks.

87

7 The Z-Wave Expert User Interface

Figure 7.28: Poltorak-Chart

Figure 7.29: Timing Info

88

7 The Z-Wave Expert User Interface

Figure 7.30: Link Status

7.5.6 Link Status

The link status map, as shown in Figure 7.30, summarizes the device-specific link status information from the config-

uration sections.

The following colors are used:

• grey: untested

• green: good quality

• yellow: reasonable quality

• red: link quality insu�icient

The links from one device can be retested using the Test link bu�on. However, please keep in mind that this process

may take several minutes to complete. For devices that do not o�er a link status function in their firmware, there is a

simple connection test to the Z-Way
™

controller using a “NOP.” Please note that this function does not test a direct

wireless connection but the route to the controller only.

7.5.7 Controller Info

This menu item as shown in Figure 7.31 provides some internal and very technical information about the Z-Way
™

controller so�ware, hardware, and firmware. The di�erent submenu items are self-explaining.

Some bu�ons allow special maintenance functions:

• View Job �eue : This bu�on opens a new tab with a list of all wireless jobs in the system. For more information

about this, please refer to Chapter 7.8. This is needed for debugging purposes only.

• Send Controller NIF : Sends out the Node Information Frame of the Z-Way
™

controller. This is needed for debugging

purposes only.

• Debug Mode : When active this bu�on is shown in green. Active debugging unlocks some special function embed-

ded in the rest of the Expert User Interface. Among them is the user interface to edit so-called “Postfix Records.”

The postfix function allows changing device capabilities a�er the device interview. Typical postfix entries sup-

press certain functions that are announced by the Node Information Frame of certain command classes but not

or wrongly implemented. Postfix is also used to rename certain functions to more meaningful terms. Post fix

entries are typically created during device testing.

• Show controller data and Show controller’s device data : The controller is a special node in the network but still a node.

89

7 The Z-Wave Expert User Interface

Figure 7.31: Controller Info

90

7 The Z-Wave Expert User Interface

Figure 7.32: Job Queue

Therefore, bu�ons allow accessing the device specific data of the controller and issue a Node Information Frame.

A third bu�on gives access to the controller specific data. Most of these data is only relevant to developers.

• Firmware Update : This function allows updating the function of the Z-Wave transceiver used by Z-Way
™

. Only

valid update files will be o�ered. It is possible to add so-called tokens. These is a special string used to identify

special function firmware or beta firmware. They are sued to make sure that this special firmware is only

available to those that really need, e.g. for testing.

The last block of the dialog shows the availability of the function calls on the serial API between the Z-Wave

transceiver and Z-Way
™

. “Not implemented” means that Z-Way
™

is either not knowing about the function in-

dicated by the function ID or does not make any use of it. A red function call ID or name indicated that Z-Way
™

can

use this function, but the transceiver’s firmware did not report to o�er this service.

Annex E gives a full overview of the Functions used and supported by Z-Way
™

.

7.6 Analytics

The analytics menu o�ers functions to troubleshoot a Z-Wave network. Details about the dialogs are provided in

Chapter 8.

7.7 Setup

The setup dialog o�ers various options to adapt the behavior of the Z-Wave Expert User Interface :

• Language: Pick your user interface language by clicking on one of the flags.

• System Se�ings: This option allows se�ing the date format and the time zone.

• Report Problem: This option allows reporting user interface bugs. Please note that the form will transmit the

test, he option email address for questions and answers plus some internal version and status information.

7.8 Job �eue

The job queue, as shown in Figure 7.32, o�ers some deep insight into the dynamics of the controller so�ware. It

visualizes the (wireless) task execution of the system. Every communication a�empt of the controller is queued and

then handed over to the Z-Wave chip for execution. The list shows the jobs pending and the jobs that are completed

or failed.

A legend informs about the meaning of the di�erent flags n, U, D, E, S, and W. The timeout value counts back from

20 seconds once the job was sent. Even when it is completed, the job will stay in the queue marked as done (D) for

some more time to allow inspection. The target node ID, a description of the communication message, information

about the process, and the real bytes of the message are shown as well.

91

8 Troubleshoot the Z-Wave Network

The Z-Wave Expert User Interface is perfectly suited to troubleshoot networks and find and fix problems. Trou-

bleshooting a Z-Wave network works along the lines of the communication stack.

Problems can occur on the radio layer, the networking layer, and the application layer. To identify and fix problems,

it makes sense to work bo�om up through the network stack issues.

Most of the troubleshooting functions are accessible on the menu item Analytics. However, this menu item will only be

displayed if the firmware on the Z-Wave chip supports some special functions needed for troubleshooting purpose.

8.1 Radio Layer

Problems on the radio layer come from interference and noise generated by defect or nonconforming electrical gear

causing electromagnetic emissions (baby monitor, old cordless phones, wireless speakers, motors, etc.). Other Z-

Wave networks with unusual high tra�ic can also be a root cause of problems. It is also possible that certain other

wireless networking services (first and foremost cellular network G4 routers or base stations, also called LTE) may

cause interference if they are too closed to the Z-Wave network.

The menu item Analytics Background Noise o�ers a view chart displaying the background noise on the two communi-

cation channels used by Z-Wave. Channel 1 refers to the 9.6 Kbit/s and 40 kbit/s communication modes, channel 2

points to the 100kbit/s data rate. Figure 8.1 shows this viewgraph. There is an obvious floor of noise with some other

“needles.” This noise floor—in Figure 8.1 at about -85 dBm for channel 1 and -90 dBm for channel 2—is the minimum

level a Z-Wave transceivers signal must surpass in order to be decoded by the Z-Wave receiver.

The lower the noise level the be�er the wireless situation. Noise levels below - 95 dBm are very good, levels

above -70 dBm are very bad.

Please note that this noise level is measured right on the controllers location or wherever the hardware running Z-

Way
™

is positioned. It may make sense to move the measuring device around to see the noise level at di�erent

locations. Since the Analytics Background Noise viewgraph is only updated once per minute, you may want to use the

tool Analytics Noise Gauge , as shown in Figure 8.2. In this case, the display is updated every two seconds.

If the noise floor is too high, you need to find the source of the noise. The device running Z-Way
™

can be used as

mobile device too, thanks to the built-in Wi-Fi. In this case, it needs to be powered with a power bank as shown in

Figure 8.3.

Walking around with the Noise Gauge enabled may help to track down the jamming device. The closer the controller

hardware gets to the source of the noise, the higher the background noise level will be.

The “needles” above the noise floor show communication from other Z-Wave networks around. Having this is not a

real problem unless other networks generate heavy tra�ic. A rule of thumb is that there should not be more than 30 %

of the time allocated by tra�ic of other Z-Wave networks. If there is more tra�ic, there will be a need to troubleshoot

the other Z-Wave network first. The chart Analytics Network Statistics , as shown in Figure 8.4, shows a ratio of own

tra�ic versus tra�ic seen from other networks.

8.2 Network Layer - Devices

Devices can have two faulty states:

• They are dead, removed, faulty, stolen, etc. In case of a mains-operated device, the central Z-Way
™

controller

will eventually find out that the device is not responding. It will put the device in the failed node list (for more

information about failed node please refer to Chapter 7). The Devices Status Overview as shown in Figure 8.5

indicates if a device is failed or not. It is possible to make a test if the device is working.

• The device is working but constantly sending unsolicited messages. This is a rare but not impossible behavior.

The simplest way to find out is to consider the packet sni�er. Figure 8.6 shows the Analytis Sni�er View of the

Z-Wave Expert User Interface .

Another option to detect faulty devices is the Network Timing Info View .

Figure 8.7 shows this view. The timing information lists one entry for every communication between the controller

and the device. The number refers to the time (in x * 10 ms) the message took before being confirmed; the color gives

a rough indication of what happened:

• Green: Successful communication with device in direct wireless range.

92

8 Troubleshoot the Z-Wave Network

Figure 8.1: Background Noise

Figure 8.2: Realtime Measurement of Background-Noise

93

8 Troubleshoot the Z-Wave Network

Figure 8.3: Powerbank to power the Z-Way™ controller for mobile use

Figure 8.4: Network Statistics Display

94

8 Troubleshoot the Z-Wave Network

Figure 8.5: Status Page Z-Way™

Figure 8.6: Packet Sni�er

95

8 Troubleshoot the Z-Wave Network

Figure 8.7: Paket timing of a fresh Z-Wave network

• Black: Successful communication with device using a route.

• Red: Failed communication (a�er a total of nine a�empts).

Figure 8.7 shows the situation in a network just installed. It can be seen that there is only communication with few

devices, e.g. no polling of sensors, etc. While this is not a problem, the chart shows that devices 4, 6, and 31 are in

direct range and all communication works perfectly well (green, low number). Device 14 seems to be a real problem

child. The controller tries all the time to reach this node but always fails. At some point in time, the controller will

accept that node 31 is dead and put him into the “failed node list.”

Figure 8.8 shows a network that is a bit more complex, has more communication and is aged. Again node 20 is a defect

device that just needs to be replaced. The following interesting pa�erns can be seen:

• Node 5 can be reached via routes only but one time not even this worked. There was some error. It is possible

that the failure of node 20 caused his and then the system found an alternative route.

• Node 6 seems to be in direct range with very stable communication but from time to time there is a failed

communication. Since this is a ba�ery-operated node, it is highly likely that the last communication with the

device reaches this device while already in deep sleep state. This does not harm the communication at all but

is worth monitoring.

• Node 15 switches between direct communication and routed communication. It seems to be right on the edge

of having a stable direct link but sometimes - may be when doors are open/closed - the direct range does not

work anymore.

Anyway, the controller seems to understand that direct range is the by far best option and constantly tries to

reach the node in direct range. The same pa�ern can be seen for nodes 29 and 31.

• Node 24 has an interesting history. For some time, there was a stable direct range communication but then it

got worse and worse to a point where communication even failed. However, the link recovered and the very last

communication was again direct, but with a slight delay of 80 ms.

8.3 Network Layer - Weak or Wrong Routes

It is the best already knowing the troublemaking devices. In this case the status of device can be checked quickly

and it is possible to dig deeper into the routing layer. Figure 8.9 shows the routing table of a controller. Technically

this is not a routing table but a matrix indicating the wireless neighborhoods of devices. Nevertheless, this a good

starting point to investigate deeper. Having many neighbors is a good thing since the routing algorithm has many

options in case something goes wrong. On the other hand, just having one other route to communicate to the rest of

the network may cause trouble if this route is faulty or moved.

The next step is to check individual routes. The configuration page of every device o�ers a link health check that

allows testing the links from this very device to its neighbors.

While the neighborhood table shows if two devices are neighbors, the link test checks how good this wireless links

96

8 Troubleshoot the Z-Wave Network

Figure 8.8: Paket timing of an aged Z-Wave network

Figure 8.9: Neighbor-Table of a controller

97

8 Troubleshoot the Z-Wave Network

Figure 8.10: Link test of a node

is. Unfortunately, not all but an increasing number of devices on the market support this link test. Figure 8.10 shows

this dialog within Z-Wave Expert User Interface . Every link has a color indicator (green = ok, red = bad, grey =

unknown) and a time stamp that shows when this test was done the last time.

Please note that the link check is a momentary analysis only and does not give any information about the history of

the link quality.

8.4 Application Layer Se�ings

In the application layer, there is usually no malfunction of a device but wrong configurations. Z-Wave Expert User

Interface allows changing and monitoring the values.

8.4.1 Polling

Heavy polling of devices causes network tra�ic leading to delays. A simple look on the sni�er as shown in Figure 8.6

reveal if there is too much polling.

8.4.2 Dead Associations

Association enable direct communication between devices. In case there are more than one device in an association

group, they will receive a command one a�er each other. A very common problem is that associations are set during

the built-up of the network and later certain devices are removed or simply fail. If this disappeared node is still in an

association group, the device will always try to communicate to this node first before communicating to other nodes.

The result is a delay. The device-specific configuration overview as shown in Figure 8.11 displays all association that

are set. It is possible to recall the current associations from the device and to remove or set associations.

8.4.3 Wrong Wakeup Se�ings

Wrong wakeup se�ings may either result in too much tra�ic draining the ba�ery, or in too slow response to sensor

update requests or configuration changes. The status overview page as shown in Figure 8.5 gives a simple overview

of the wakeup se�ings of the di�erent ba�ery-operated sleeping devices. The device-specific configuration se�ings

allow changing these se�ings. Besides the wakeup interval, the se�ing also allows se�ing/changing the Node ID of

the controller holding the mailbox of this device. This se�ing must reflect the correct situation in the network.

98

8 Troubleshoot the Z-Wave Network

Figure 8.11: Association Dialog in Z-Wave Expert User Interface

8.5 Summary

Table 8.1 summarizes the possible “10 root causes of Z-Wave network problems” and suggestions how to fix them.

99

8 Troubleshoot the Z-Wave Network

No. Cause How to �nd ? How to �x ?

1 Noise by other transmitters Background Noise Chart Find them and turn them o�

2 Noise by other Z-Wave net-

works

Background Noise Chart,

Network Statistics

Talk to the neighbor ;-)

3 Faulty devices Status Page, Failed Node Remove them or replace

them.

4 Crazy Devices (always send-

ing)

Sni�er Remove them or replace them

5 Weak Link Neighbor-Table, Link Health

in Con�guration Page

Add more routing nodes,

move devices

6 Heavy Fading Timing Infos Network Reorganization,

more devices

7 Wrong Routing Timing Infos Network Reorganization

8 Wrong Polling Sni�er Change and Save

9 Wrong Wakeup Intervals Status Page Change and Save

10 Dead Nodes in Assoc. Groups Association display in Con-

�guration Page

Change and Save

Table 8.1: Troubleshooting on Z-Wave networks

100

9 Extending the systems beyond Z-Wave

9.1 IP-Cameras

IP cameras transmit a video stream that can usually be accessed having dedicated mobile apps. Under certain cir-

cumstances it is possible to have the very same video stream in parallel within the Z-Way Smart Home Interface.

All Z-Way
™

user interfaces (Web Browser and native apps for IOS and Android) are based on o�-the-shelf HTML

rendering engines supporting standard video and image formats. To display the video stream of a certain camera this

stream must comply to commonly used public standards, such as MJPEG.

Certain cameras however use proprietary video encoding that can only be decoded by special native mobile apps

of the manufacturers. These cameras can’t be supported by Z-Way
™

.

9.1.1 How to find out if a camera is supported by Z-Way
™

?

1. Check the manual if MJPEG is mentioned as encoding method for the video stream.

2. Check if there is a way to access the video stream using a standard web browser such as Google Chrome or

Microso� Internet Explorer.

9.1.2 How to prepare for integration?

To integrate a camera into Z-Way
™

, this camera needs to be setup first following the guidelines given in the manu-

facturers manual. As a result, there must be

• A login name (examples are “admin” or “user”)

• A password for access (this usually needs to be setup

• The IP address of the camera

9.1.3 How to find the IP address of the camera?

Most IP networks in private homes and o�ices assign IP devices a new IP address using the DHCP protocol. The

router holds a list of IP addresses and will arbitrarily choose one address from the list to the new IP device. Even a�er

a reboot this address will remain the same. If the setup process mentioned above does not reveal the IP address there

are two common ways:

• Log into your IP routers user interface. Usually this interface will display all IP addresses assigned together

with a name and/or type of the device.

• Use an IP address scanner on your PC or notebook that will tell you all IP devices active in a network plus the

type of IP device they ae assigned to. A valuable tool for this is called “Angry IP Scanner” available for all PC

platforms such as MAC OSX, Linux or Windows. It requires a Java Virtual Machine (JVM).

9.1.4 How to integrate the camera into Z-Way
™

?

The Z-Way Smart Home Interfaceallows adding new devices. Log into the user interface of Z-Way
™

, click on the

setup menu (icon on the upper right side) and click on menu item Add New Device . You see the dialog as shown in Figure

9.1. Now choose the IP camera symbol line and click + .

Now you will find a list of IP camera types plus one generic IP camera option called ’Web Camera’. This dialog is

shown in Figure 9.2.

If you are lucky, the name of your camera is already on the list. If not, you can check in the app store if there is a

new support app available for your camera type. Go to Setup App Online Apps and filter for ’Video Surveillance.’

Figure 9.3 shows the app store with camera filter.

If you find your camera type, just install the app and redo the steps above. Now you will find the new camera in the

list to choose from.

Once you click on the camera of your choice there will be a setup wizard asking you as a minimum for the IP address

of your camera, the login name, and the password. Therefore, you need this set of data from the setup process of your

device.

101

9 Extending the systems beyond Z-Wave

Figure 9.1: Inclusion of prede�ned cameras

Figure 9.2: Generic camera module

Figure 9.3: More camera support in App Store

102

9 Extending the systems beyond Z-Wave

Figure 9.4: Web browser debug interface

9.1.5 How to support a camera not on the list yet?

If your camera type is neither on the list of preset cameras nor there is a new app in the online app store there is still a

very good chance to get your camera integrated. However now there is more work needed to find the right commands

controlling your camera. In this case, you will need to choose the generic camera type “Web camera,” which requires

the same set of information (IP address, login, password) but more than that.

Note: This work requires some basic understanding of web pages, IP, and URLs. The generic web camera allows defining
the URL to the video stream and—if the camera has these capabilities—links to tilt, turn, night vision control, etc.
To find these URLs, you need to log into your camera using a generic web browser. We strongly recommend using

Google Chrome because of the debugging capabilities. The following explanation assumes the Chrome browser, but

other browser will have similar functions.

1. Open the JavaScript Debug console. You find this option on the browsers menu under View Developer . Figure

9.4 shows the web browser with debugger active.

2. Once the debugger is open pick the menu item network of the debugger (see image below”

3. Now you use the cameras web interface for accessing the image/stream, tilting, moving, etc. Whenever you do

this the URL needed will be sent from the web interface to the camera and becomes visible in the debugger.

Take these URLs and copy them into the setup interface of ’Web Camera’. The camera control in Z-Wave

will call the same URL for control.

9.2 433 MHz devices

9.2.1 Introduction

433 MHz wireless communication is an outdated wireless technology. It is single direction wireless communication

only without confirmation of received packets and it does not have any security functions. It is not standardized and

subject to jamming by other devices since 433 MHz is a non-regulated frequency range. However, it is still used is

many low-end alarm and control systems and there is a quite large install base in the market. The biggest advantage

of 433 MHz devices is its low price.

Due to its one-way wireless connection, sensors can only report values and actuators can only receive values. Unfor-

tunately, there is no regulation in the frequency band. Every supplier has its own code set for actuators and sensors.

Typical suppliers of 433 MHz devices are Intertechno, Conecto, Mumbi, Homeeasy, Elro, Teldus, Brennenstuhl, Olympia

and others.

103

9 Extending the systems beyond Z-Wave

Figure 9.5: Popp 433 MHz Gateway

9.2.2 433 MHz Gateway

In order to support 433 MHz devices special gateways are required. Z-Way
™

has built-in support for the 433 MHz

gateway from Popp. Figure 9.5 shows this gateway hardware. The device is powered by an external standardized mini

USB port and can be connected ot USB wall outlets, mini USB power supplies, etc.

Once configured and connected to the Z-Way
™

System, this gateway allows to learn di�erent code sets of di�erent

manufacturers. It can therefore be used universally for all kinds of 433 MHz devices from di�erent manufacturers

even if there is no detailed technical description of the code set used.

Z-Way
™

can support multiple Popp 433 MHz gateways when one single gateway cannot cover the whole home. The

Popp 433 MHz hub is connected to Z-Way
™

using Wi-Fi. This means that there must be at least one Wi-Fi network

to connect the 433 MHz and an IP connection to the Z-Way
™

system (not necessarily Wi-Fi but cable Ethernet is

possible too if there is a router between the cabled ethernet and the Wi-Fi).

9.2.3 How to setup the 433 MHz Gateway

First, install the app ’RF433’ from the online app store. For more information about the online app store, please refer

to Chapter 6.

Activate the RF433 app as shown in Figure 9.6. If you like you can change the operating IP from 8000 to any other IP

port number available. However, its perfectly fine to keep it at 8000. Once the RF433 app is running on your Z-Way
™

system you need to setup the 433 MHz gateway.

Power Up the 433 MHz Gateway

Place the 433 MHz connector on the place of choice and power it using a standard 5V USB power supply. Push the

central bu�on until the LED slowly blinks in purple indicating that the device is in configuration mode serving its own

access point.

In this mode, the gateway acts as access point creating its own Wi-Fi network. The SSID of this Wi-Fi network is

gw433-xxx with xx as some individual serial code.

You need to connect to this Wi-Fi network using any Wi-Fi capable device available (e.g. mobile phone, notebook,

etc.). Now start a web browser on this device and open the page

http://192.168.4.1
to access the configuration interface as shown in Figure 9.7. There is no password needed.

Configure the 433 MHz Gateway

Click on Configuration to access the setup dialog as shown in figure 9.8.

• Wifi-Se�ings: Choose the SSID of your Homes Wi-Fi. This is the Wi-Fi that establishes the IP connection

between the 433 MHz Gateway and the Z-Way
™

controller. You can scan for available SSIDs. In case the Wi-Fi

104

http://192.168.4.1

9 Extending the systems beyond Z-Wave

Figure 9.6: RF433 App Setup

Figure 9.7: 433 MHz gateway web interface

105

9 Extending the systems beyond Z-Wave

Figure 9.8: 433 MHz gateway setup dialog

106

9 Extending the systems beyond Z-Wave

Figure 9.9: 433 MHz option in ’Devices’

network selected requires a password (or WPA key) enter this key as well.

• DHCP Active: In most case the Wi-Fi you connect to will run DHCP for automated IP address assignment.

Only if you know for sure that there is no DHCP you need to setup a fixed IP address plus network mark plus

gateway.

• Fixed IP Se�ings: This setup is only needed if there is no DHCP service on the Wi-Fi selected.

• Hub Server/Port: Here you need to configure the IP address of your Z-Way
™

controller and the IP port address

chosen during the setup of the RF433 app on Z-Way
™

.

Activate the connection mode of the Gateway. The local Access point will be deactivated and the gateway connects

(1) to the Wi-Fi and through the Wi-Fi to the (2) Z-Way
™

controller. Success is indicated by blinking of the green

LED.

You can always return to the configuration mode by a long push of the central bu�on on the 433 MHz gateway. In

this case any connection to the Z-Way
™

controller is deactivated and the local Wi-Fi with SSID gw433-xxx is active

again. Here again the di�erent LED codes of the Popp 433 MHz gateway:

• blue blinking: Configured but searching for connection to Z-Way
™

controller

• purple blinking: Gateway is in initial configuration mode. Connect to Wi-Fi APN gw433-XXXX and call URL

h�p://192.168.4.1 for initial configuration

• green permanent: connection established

• green short blink: communication from/to gateway

Teach In 433 MHz devices

Once the 433 MHz gateway is configured corrected and is connected it is possible to teach-in 433 MHz devices. A new

section of devices will appear on the “Device” overview in the setup menu of the user interface as shown in Figure 9.9.

A�er clicking the Add bu�on choose the type of 433 MHz device to teach in:

1. Binary Sensors such as door sensors and motion detectors

2. Remote Controls

3. Actuators like Smart Plugs

While Sensors and Remote controls only send out commands the actuators receive commands only. To teach them

into the system a li�le trick is needed. Each Smart Plug or other actuator comes with a small remote control sending

exactly the commands expected by the actuator. In order to control an actuator, the associated remote control is

required to issue commands that can be captured by Z-Way
™

.

The remote control itself is handled in the same way. The only di�erence is the way the elements are created.

Once device type is selected and the teach in process has started, all the bu�ons of the remote control must be pressed,

one a�er each other. Figure 9.10 shows this moment. The pulse train of the bu�on commands are shown in the tech-in

dialog and the number of the remote-control bu�ons can be assigned.

For Actuators the same process applied, but the status of the actuator needs to be assigned to the pulse train.

Another specialty concerns binary sensors. Some 433 MHz sensors send signals on open and on close. However, some

other sensors only create one wireless command when the sensor trips. For alarm systems, this is enough but for

Smart Home with User Interfaces this is not working since the element cannot show the actual status. For these

kinds of sensors, there is an automatic switch back to o� function a�er a defined time interval. Figure 9.11

Once all pulse trains are captured, the new element need to be renames and assigned into a room.

The management function for 433 MHz devices allows accessing the setup and change it as shown in figure 9.12

107

9 Extending the systems beyond Z-Wave

Figure 9.10: 433 MHz teach in

Figure 9.11: 433 MHz teach in of a binary sensor

Figure 9.12: 433 MHz device management

108

9 Extending the systems beyond Z-Wave

Figure 9.13: Popp EnOcean USB Stick

Figure 9.14: EnOcean App con�guration

9.3 EnOcean devices

EnOcean is another wireless communication technology optimized for very low power consumption.

Z-Way
™

has implemented support for EnOcean devices but limits its function to sensors and wall switches because of

their ba�ery-free and therefore maintenance-free design. Compared to Z-Wave, EnOcean is a quite simple protocol.

There is no such thing like network inclusion or routing—every EnOcean device just sends out a specific datagram

that includes a unique device id and the data (sensor values, switch status) of the specific function of the device. The

encoding of these data is defined in so-called profiles. These profiles are identified by a three-byte value but they are

not transmi�ed wirelessly. Hence the user must decide from his product knowledge what profile a certain device is

using. The EnOcean receiver will use this information to decode the datagram and use the data. (This means that a

wrong decision about the profile of a EnOcean device will lead to severe malfunctions of the system).

Every EnOcean receiver in proximity will always receive every datagram sent by a transmi�er. This leads to two basic

management functions of the EnOcean module:

1. select the right products (by their unique 4 Byte ID) to use—and ignore all others

2. define the correct profile by selecting the right product

To work with EnOcean devices, an EnOcean USB Stick is required. Please use the Popp EnOcean Stick (POPE12204)

as shown in Figure 9.13 and plug it into the USB port
1
.

Next, the EnOcean app must be installed from the app store and configured as shown in Figure 9.14.

Make sure to pick the right device name of the EnOcean USB Stick connected to your hardware. For Raspberry Pi-

based platforms this is always /dev/USB0 but for other platforms this may be di�erent. The internal name, “zeno,”

can be arbitrarily chosen. In case more than one EnOcean stick is operated this name needs to be unique.

Now it is possible to “teach-in” new products using the user interfaces “Device” section Configuration Device EnOcean .

As described above the first step is to select the right product. A list of manufacturers with their products are given

to select from. Please note that the EnOcean module may support many more devices from other manufacturers as

1
Other EnOcean sticks may work as well, but the correct function is not supported and they may stop working after Z-Way™ �rmware updates.

109

9 Extending the systems beyond Z-Wave

Figure 9.15: EnOcean Teach In

Figure 9.16: EnOcean Device Con�guration after Teach-In

long as they have the same profile. A good example for this is a door window sensor (profile name D5-00-01). Multiple

manufacturers o� door-window sensors, some even in the same enclosure but some in slightly changed enclosure.

Their EnOcean wireless capability is however similar.

You may find the profile name on the label of the unknown device or documented in the device specification of the

manufacturer.

Please not that without proper knowledge of the device and its profile it is impossible to operate the device!

A�er selecting the right device, the user interface asks for the teach-in process as shown in Figure 9.15. During this

process, the new device must send out one datagram containing the unique ID. The user interface will give some hints

how to generate such a datagram.

Once this datagram was received, the EnOcean module will generate virtual devices according to the profile selected.

You can change the names of the elements to be generated. Figure 9.16 shows this dialog.

Finally, as shown in Figure 9.17 one or multiple elements will appear in the elements view. One example of the wall

controller device shows Figure 9.18.

The menu option Devices also o�ers a special interface to manage EnOcean devices as shown in Figure 9.18. This

dialog o�ers a list of all known EnOcean devices with an option to change the profile. Furthermore, it is possible to

manually select one of the valid profiles of EnOcean for a device not known to the standard user interface. Please note

that profiles not known to the standard UI are also not supported by the standard user interface and will not leads to

creating new UI elements. However, the device is still created in the API and can be used by third-party so�ware.

For a list of all supported EnOcean devices, please refer to Annex F. Experienced Users and programmers may extend

this list by adding their own profiles to Z-Way
™

. Chapter 13.4 describes how to do this.

110

9 Extending the systems beyond Z-Wave

Figure 9.17: EnOcean Device Elements

Figure 9.18: EnOcean Device Management

9.4 Other IP/Internet-based services

Z-Way
™

can work with external IP-based systems. Please refer to the app store description for more information

about how to integrate third-party IP-based devices. Please refer to Chapter 6 for details.

111

10 Customize your system

10.1 Skins

Wouldn’t it be cool to have your own individual user interface controlling your own individually designed Smart

Home? Z-Way
™

o�ers you exactly this feature—it is called ’Skin’. The Skin is a so�ware package redefining all visual

elements of your mobile and browser interface including images, fonts, colors, wallpaper, etc. Figure 10.1 shows the

menu option for customization on the setup menu in the user interface.

Designing a new skin from scratch is a lot of work. It is easier to choose an already existing skin. Go to Setup

Management Customize and activate a new skin. You can also download skins from the online server.

10.1.1 Step 1 - Do you own Skin

A skin consists of a set of images and a description file for fonts, colors, etc., called CSS (Cascaded Style Sheets). See

Annex A for links to more information about CSS.

The starting point for a new skin is a blank template you can download from

http://github/z-wave-me/Skin-blank
.

This file is a zip archive you need to unzip into a temporary folder. This folder contains two sub folders:

• /blank : This is the blank skin template including the CSS file main.css, a screenshot image for the selection

in the store and a subdirectory with all the images needed for the skin.

• /sass : This is the source code to generate the main.css—more on this magic later!

10.1.2 Step 2 - Do your own Images

Images are a central part of any skin. As shown in Figure 10.2 the /blank/img subdirectory contains two sub-directories

and two files:

• /icons : The images of all the di�erent elements. Please be aware that some element types like dimmers have

three, some have two, and some have only one icon. The names of the icons are self-explaining.

• /logo : This contains the logo displayed on the upper le� side of the screen and the wallpaper.

• main.css: This is the cascaded style sheet you will need to edit.

• main.css.orig: This is your safety belt. In case you mess up your main.css here you have the original as backup.

• Screenshot.png: The preview image for selecting a skin

• Wallpaper.png: the wallpaper of the User Interface

Figure 10.1: Skin Setup

112

http://github/z-wave-me/Skin-blank

10 Customize your system

Figure 10.2: Skin directory structue

There are plenty of tools to redesign and change images. This short write up will not explain this in detail but the

Internet if full of resources for image editing. Just a few remarks:

• Use exactly the names of the icons as they are provided in the blank skins. Otherwise, they will not be used.

• Icons should be 64x64 pixels. Make them as small as possible allow fast loading

Hint: The easiest change of a skin is just to replace the wallpaper image by something individual.

10.1.3 Step 3 - Test the new Skin

A quick way to test a new skin is to load it directly to your Smart Home gateway running the Z-Way
™

controller

so�ware. This is possible for all Z-Way
™

installations running on a PC (Linux, Windows) or on a Raspberry PI. Z-

Way
™

installations on other “closed” boxes such as Popp Hub are not suited for such a quick test drive—sorry!

First of all you need to choose the “Default Skin” in your Z-Way Smart Home Interfaceon Setup Management

Customize . Only the Default Skin can be changed in the quick way described below.

Then you need a way to copy files of your new Skin on the Z-Way
™

installation. This can be done using simple file

copy (when developing on the PC running Z-Way
™

) or using FTP. You can replace all images by copying them into

the folder.

/opt/z-way-server/automation/storage/images/
.

One exception is the wallpager.png which is in the folder

/opt/z-way-server/htdocs/smarthome/app/css
like the main.css that holds all other se�ings.

Once a new file is changed or uploaded reload the UI on your browser or restart your native app, and voila, your

changes are visible.

Hint: To test a new wallpaper, just copy your file of choice to

/opt/z-way-server/htdocs/smarthome/app/css/wallpaper.png
and reload the page.

10.1.4 Step 4 - Change colors, fonts, shapes – almost

Colors, fonts, etc. are all controlled by the file main.css. Open this file in a text editor and you will be shocked by the

about 10.000 lines of code. If you are a CSS pro you may be able to edit this but this is not the recommended way to

do this. CSS is great tool for shaping web pages but it has much legacy that makes it hard to edit manuals. However,

if you really like to go that route Annex B will provide you some hints where to find the important lines of code. Use

113

/opt/z-way-server/automation/storage/images/
/opt/z-way-server/htdocs/smarthome/app/css
/opt/z-way-server/htdocs/smarthome/app/css/wallpaper.png

10 Customize your system

at your own risk—you are warned.

10.1.5 Step 5 - Going into the SASS world

SASS is a preprocessor for generating CSS files. It extends CSS syntax and adds a few very useful functions such

as central variables. This and a few other advantages caused many web designers moving away from writing CSS

directly but using SASS.

The disadvantage is that you need to have another so�ware on your developer PC translating the SASS files into the

final CSS (main.css). Annex B provides some links to SASS tutorials and to some tools to translate from SASS into

CSS.

We recommend the tool “Scout” because it works equally well on Windows and on MAC, is well documented and

does most of the magic automatically.

• Download Scout from h�p://scout-app.io/ and install the tool

• Watch the movie

www.youtube.com/watch?v=Fju3aXW6zLM&feature=youtu.be

for instructions on how to set up and use Scout.

Few Hints:

• Start Scout and setup as shown in the movie. Point to the folder /sass as source folder and to the final folder of

your skin as destination.

• The generated main.css file you can upload to your test box as described above. Whenever you change a SASS

file the Scout application will detect it and automatically update the generated main.css. Then you can upload

the main.css to your test controller.

10.1.6 Step 6 - Changing SASS

Finally we come to the point of making a real new Skin by changing the layout, color and font definitions of the blank

skin. For this you need to edit the sass files provided with the blank skin. The central sass file is main.scss. It does not

contain any layout definitions but loads all the other needed files only. The idea behind sass is among others to have

di�erent functions separated into di�erent files. For the Skin in Z-Way
™

however 98 % of all changes will happen in

only one file - /common/_variables.scss. This file contains all major definitions for colors, shapes, sizes, fonts, etc.

Hint: A first run should be like:

1. Change an important color, e.g. $app-color-primary: #000000;

2. Save the file

3. Watch Scout compiling the change and updating main.css

4. Uploading the new main.css to the test box

5. Reload (and empty cache ‼!) the web page and see the result

10.1.7 Step 7 - Create the final Skin for friends, family and the public

In order to create a final skin file, a few more work needs to be done.

Create a preview image

Just make a screenshot of the new skin as preview. For the skin selection in the Z-Way Smart Home Interfacethe

screenshot must be stored in the folder skinname/ and must be named screenshot.png Recommended dimension for

this image is 300px X 150px.

Collect all files together

You need a folder with the name of the skin. This contains the screenshot.png, the wallpager.png and the main.css

plus the subfolder (img that has two further subfolders /logos and /icons)

114

www.youtube.com/watch? v=Fju3aXW6zLM&feature=youtu.be

10 Customize your system

Figure 10.3: Go to menu Skin

Figure 10.4: Upload new Skin

myskin

main.css

myskin.png

wallpaper.png

img

logo/*.png

icons/*.png

Pack the files

The whole folder needs to be packed now using ZIP archive program. On MAC please make sure to use the ZIP

command line and not the built-in compression tool of the finder. This will not work. Move inside the folder of your

skin (example above is /myskin) and execute “zip -r -X myskin.zip *.”

10.1.8 Step 8 - Distribute your Skin

1. If not done yet create your personal account on the h�ps://developer.z-wave.me/

2. Go to Menu -> Skins as shown in Figure 10.3.

3. Click on the “Upload new skin” bu�on as shown in Figure 10.4.

4. Select a packed skin from your PC as shown in Figure 10.5.

5. Skin will be automatically uploaded. If an upload process is successful an update form is shown. In the form

activate skin, enter title, UI version, Skin version, description, author name, homepage and upload a skin image.

Click on update.

10.1.9 Step 9 - Rewind in case something goes wrong

For sure you will end up with skin a�empts that don’t work well. In a worst-case scenario, you can’t even pick a

di�erent skin anymore and your default Skin was messed up. For such a case, there is an emergency reset Just call

115

10 Customize your system

Figure 10.5: Select the packed Skin

the URL

http://IP:8083/ZAutomation/api/v1/skins/setToDefault
.

10.2 Icon Sets

It is possible to add individual icon sets to the Z-Way
™

and share it with others.

10.2.1 Create Your own Icons

First to the icon as such. They must have a size of 64x64 pixel and must be encoded in PNG image file format. You

are free to make every icon you can imagine. Please note that there is a list of typical devices where standard icons

are applied:

• ba�ery

• heating

• motion

• energy

• water

• gas

• switch

• smoke

• door

• window

• light

• media

• blinds

• cooling

• co

• fan

• flood

• thermostat

• luminosity

• humidity

• temperature

Please note as well that certain elements need two or even three icons to indicate di�erent status of their operation.

10.2.2 Create an Icon Pack

It is certainly possible to just replace the icons right in the User interface exchanging the file in the filesystem on

/opt/zway-server but there is a much be�er way. Icons should be grouped into icon sets and should be placed on the

server to be available for all Z-Way
™

users. The grouped icons are called icon packs.

An icon pack is essentially a gz or zip archive file containing di�erent icons. All icons need to be stored in a subfolder

with the name of the icon set. The archive must then have the very same name. Only store the icons in the archive

and not the subfolder itself! or Unix OS these commands will work:

1. cd /icons/youriconpack

116

http://IP:8083/ZAutomation/api/v1/skins/setToDefault

10 Customize your system

Figure 10.6: Select the Icon pack

Figure 10.7: Manage an Icon pack

2. tar -cvzf youriconpack.gz *

The total size of the archive must not exceed 2 MB.

10.2.3 Upload your Icon Set

For this please register at

h�p://developer.z-wave.me/.

Once logged in, the right-hand side menu icon allows opening the icon set management dialog as shown in Figure

10.6

Here you can create a new Icon pack record and manage you existing ones:

Please choose the title of your icon pack and provide a screenshot. This is the image shown in the icon set preview as

described in Section 4.2.3.

10.3 How to translate the Z-Way
™

to your language

Z-Way
™

operates with two di�erent user interface both having its own translation engines and translation files.

Additionally, the backend code will translate certain tokens already when handling the data. Finally, the applications

from the app store may need to be translated as well.

You can call all relevant files from info@zwave.me or download from GitHub

h�ps://github.com/Z-Wave-Me/zwave-smarthome/tree/dev.

You can also use the installation of Z-Way
™

on your system if you have access to the file system. The following

tutorial assumes you have this access. This also allows you to translate the strings and subsequently test the new UI.

All Z-Way
™

code you find in the folder and subfolders of /z-way-server.

Please note that you can include your name, email, and company web page link to both UIs as a reward for doing the

work.

10.3.1 Smart-Home User Interface

All translation tokens for the Smart Home UI can be found in /htdocs/smarthome/app/lang. Just copy the file en.json

to XX.json with XX as ISO 2 char code of your language. Start translating the new file into your language.

In app/config.js find a language list array “lang_list”: [’en’, ’de’, ’ru’, ’cn’, ’fr’]. Just add your 2-char code. In / htdocs

/smarthome/app/images/flags the flag of your country/language needs to be added. The code expects the file name

117

10 Customize your system

XX.png with a 24x24 pixel PNG image.

For the standardized form dialogs of the application setups you find the language tokens in app/core/config.js. The

array “lang_codes” need to be extended by your language.

10.3.2 Expert User Interface

All translation tokens for the Smart Home UI can be found in /htdocs/expert/app/lang. Just copy the file en.json to

XX.json with XX as ISO 2 char code of your language. Start translating the new file into your language.

In app/config.js find a language list array “lang_list”: [’en’, ’de’, ’ru’, ’cn’, ’fr’]. Just add your 2-char code.

10.3.3 Backend Code

The subfolder /translations contains some XML files that are required for backend actions and rendering. These

renderings are done in the backend and used in both Browser Type User Interfaces. The main files to extend with own

language are:

1. ScaleIDs.xml: Contains the scales for multilevel sensors. These Scale Strings are displayed on both Expert UI

and Smart Home UI whenever a sensor value is shown

2. Alarms.xml: Contains the Strings for the various Alarm types of Z-Wave. These strings are used in Expert UI

and for the initial device name in Smart Home UI.

3. ColorCapabilities.xml: Contains the types of color se�ings. This is used for the initial device name in Z-Way

Smart Home Interface.

To alter and extend these files, please find out the ISO 2 char code of your language and add one line for each token.

10.3.4 Submission of your Language Pack

Please send the translated language files XX.json plus your flag plus any changed XML file zipped to info@zwave.me

for inclusion into the next release of the so�ware.

118

11 Develop Code for Z-Way
™

11.1 Z-Way
™

so�ware structure overview

Z-Way
™

o�ers multiple Application Program Interfaces (API) that are partly built on each other. Figure 11.1 shows

the general structure of Z-Way
™

with focus on the APIs. The most important part of Z-Way
™

is the Z-Wave core.

The Z-Wave core uses the standard Sigma Designs Serial API to communicate with a Z-Wave compatible transceiver

hardware but enhanced with some Z-Way
™

specific functions such as frequency change. The standard interface is

not public but available for owners of the Sigma Designs Development Kit (SDK)
1

The Z-Wave core services can be accessed directly using the Z-Wave Device API (zDev API). There are two Z-Wave

device API versions available:

• Z-Wave API as JSON API: All functions are available using a JSON API implemented by an embedded webserver.

This web server can be used in two ways:

– web sockets, a permanent IP connection

– REST (Representational State Transfer)

Both ways to use the JSON API have the same data structures and commands. The Z-Wave Expert User

Interface as described in chapter 7 uses the REST option of this JSON API. This user interface is a very good

reference how to apply the Z-Wave Device API. For oore information about the Z-Wave Device API please

refer to Section 11.2.1.

• Z-Wave API as C Library API: All functions of the JSON API are available as C library function too. The URL

razberry.z-wave.me/fileadmin/z-way-test.tgz

provides a sample application wri�en in standard C that makes use of the C level API to demonstrate its ap-

plication. Makefiles and project files for compilation on Linux and OSX are provided together with the sample

code. More information on the C level API you find in Section 11.4.

The Z-Wave device API only allows the management of the Z-Wave network and the control and management

of the devices as such. No higher order logic except the so-called Z-Wave associations between two Z-Wave devices

can be used.

For all automation and higher order logic a JavaScript automation engine is available. This engine is also

shipped with Z-Way
™

.

The JavaScript API on top of the JS engine mirrors all functions of the Z-Wave Device API but also allows access to

third-party device APIs (e.g. EnOcean). This means the JS API is the common ground for all further application logic

and user interfaces (with the exception of the Z-Wave Expert User Interface that uses the Z-Wave Device API.

The JavaScript layer makes use of a JavaScript implementation provided by Google it is also used in Googles Chrome

web browser. All JavaScript API functions can also be accessed using the embedded webserver. The beauty of this

interface is that JavaScript can be executed on the server and on the client. Executing on the client makes sense for

small changes to the data model or running small helper programs.

There are two important sub-portions of the JavaScript layer:

• Virtual Devices (vDevs): All functions of the physical devices plus other functions are mapped into virtual

devices. Virtual devices have properties and a�ributes linked to their physical counterpart functions. The Z-Way

Smart Home Interfaceis completely wri�en using the virtual device concept and this user interface can act as

a good reference how to use them. Please refer to chapter 11.3 for more information about the use of the vdev

concept.

• The Apps: These are JavaScript portions that are dynamically loaded into the JS core and implement application

or user specific function. Please refer to chapter 6 for more information about the app concept and existing apps.

Please refer to Chapter 13.2 for more information about how to develop own apps.

1
The Sigma Designs SDK is available from Digikey (www.digikey.com). Depending on the hardware options chosen the price varies between 2000

and 4000 USD only.

119

razberry.z-wave.me/fileadmin/z-way-test.tgz

11 Develop Code for Z-Way™

Figure 11.1: Z-Way™ APIs and their use by GUI demos

11.2 Z-Way
™

APIs �ick Reference

11.2.1 Z-Wave Device API

The Z-Wave Device API implements the direct access to the Z-Wave network. All Z-Wave devices are referred to

by their unique identification in the wireless network—the Node ID. Z-Wave devices may have di�erent instances of

the same function, also called channels (for example sockets in a power strip). The Z-Wave Device API refers to them

as daughter objects of the physical device object identified by an instance ID. In case there is only one instance, the

instance ID = 0 is used.

Sending Z-Wave Commands

All device variables and available commands in a Z-Wave device are grouped in the so-called command classes. The

Z-Wave API allows direct access to all parameters, values and commands of these command class structures. Annex

D gives you the complete reference of the implemented command classes.

Beside the devices the Z-Wave Device API also o�ers access to the management interface of the network. Annex E

gives you a full reference of the implemented function classes.

The Z-Wave Device API can be accessed on the JSON API with any standard web browser using the URL

http://YOURIP:8083/ZWaveAPI/*
.

Device objects or commands of these objects are accessed by

http://YOURIP:8083/ZWaveAPI/Run/devices[*].*
http://YOURIP:8083/ZWaveAPI/Run/devices[x].instances[y].*
http://YOURIP:8083/ZWaveAPI/Run/devices[x].instances[y].commandClasses[z]
.*

The whole data tree of the Z-Wave network is accessed using

http://YOURIP:8083/ZWaveAPI/Data/*
.

Please refer to the Z-Way
™

for information about the context, the commands, and the data used. Section 11.3 provides

more information about the API and the underlying data structure.

120

http://YOURIP:8083/ ZWaveAPI/*
http://YOURIP:8083/ ZWaveAPI/Run/devices[*].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].commandClasses[z].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].commandClasses[z].*
http://YOURIP:8083/ZWaveAPI/Data/*

11 Develop Code for Z-Way™

All acces ot the webserver require authentication of the user. Please refer to Chapter 13.1 for details how to authen-

ticate.

11.2.2 JavaScript API (JS API)

The Z-Wave Device API or any other third-party technology API do not o�er any higher order logic support but the

pure access to functions and parameters of devices only.

Z-Way
™

o�ers an automation engine to overcome this restriction. A server-side JavaScript runtime environment

allows writing JavaScript modules that are executed within Z-Way
™

(means on the server). The same time all functions

of the JS API can also be accessed on the client side (the web browser). This o�ers some cool debug and test capabilities.

Among others it is possible to write whole JS functions right into the URL or the browser.

The JS API can be accessed from the web browser with the URL

http://YOURIP:8083/JS/Run/*
Among others the whole Z-Wave Device API is available within the JS API using the object “zway’‘. As a result, the

following three statements refer to the very same function:

1. h�p://YOURIP:8083/ZWaveAPI/Run/devices[3].* Client Side URL access using the Z-Wave Device API.

2. h�p://YOURIP:8083/JS/Run/zway.devices[3].*: Client Side URL access using the JS API

3. zway.devices[3].*: Server Side access using the JS and the public zway object

Due to the scripting nature of JavaScript it is possible to “inject’‘ code at run time using the interface. Here a nice

example how to use the JavaScript setInterval function:

Listing 11.1: Polling of device #2

/ J S / Run / s e t I n t e r v a l (f u n c t i o n () {

zway . d e v i c e s [2] . B a s i c . Get () ;

} , 3 0 0 ∗ 1 0 0 0) ;

This code will, once “executed’‘ as URL within a web browser, call the Get() command of the command class Basic of

Node ID 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values of the device tree. They get

then executed when the value changes. Here is an example for this binding. The device No. 3 has a command class

SensorMultilevel that o�ers the variable “level.” The following call—both available on the client side and on the server

side—will bind a simple alert function to the change of the variable.

Listing 11.2: Bind a function

zway . d e v i c e s [3] . S e n s o r M u l t i l e v e l . data [1] . v a l . b ind (

f u n c t i o n () {

d e b u g P r i n t (’CHANGED TO : ’ + t h i s . v a l u e + ’ \ n ’) ;

}) ;

2

Chapter 11.3 and 11.3.1 describe the whole JS API in detail. The names and IDs of the di�erent command classes as

well as their instance variables can be found in the Annex D.

JavaScript modules can and will generate new functions that are accessible using the JSON interface. For simplification

function calls on the API (means on the client side) are wri�en in URL style starting with the word “ZAutomation”:

/ZAutomation/JSfunction/JParameter == JSfunction(JParameter)

11.2.3 Virtual Device API

All functions and instances of a physical device, which are represented as daughter objects in the Z-Wave Device API,

are enrolled into individual virtual devices.

In case the Z-Wave API shows one single physical device with two channels, the Virtual Device API will show two

devices with similar functionality. In case the Z-Wave API shows a physical device with several functions (like a binary

switch and an analog sensor in one device), the Virtual Device API (vDev API) will show them as several devices with

one function each.

The vDev is accessed using the JSON API in a slightly di�erent style than zDev API. All devices, variables, and com-

mands are encoded into a URL style for easier handling in AJAX code. A typical client-side command in the vDev API

looks like

2
Please note that the Sensor Multilevel Command class data is an array index by the scale ID. Other command classes such as Basic do not have

this index but allow direct access using CommandClassName.data.level

121

http://YOURIP:8083/JS/Run/*

11 Develop Code for Z-Way™

API Type Core Function Network Man-

agement

Automation

Z-Wave Dev API

(JSON)

Access to physical network and

physical devices via JSON

Yes No

Z-WaveDev API (C lib) Access to physical network and

physical devices via C style calls

Yes No

JavaScript API Access to physical network and de-

vices plus JS type functions

No Yes, via zDev

vDev API Uni�ed Access to functions of de-

vices, optimized for AJAX GUI

No Yes

Table 11.1: Di�erent APIs of the Z-Way™ system

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off
“API” points to the vDev API function, “v1” is just a constant to allow future extensions. The devices are referred

to by a name that is automatically generated from the Z-Wave Device API. The vDev also unifies the commands

“command” and the parameters, here “o�.”

On the server side, the very same command would be encoded in a JavaScript style.

Listing 11.3: Bind a function

dev = t h i s . c o n t r o l l e r . d e v i c e s . g e t (’ ZWayVDev \ _6 : 0 : 3 7 ’) ;

dev . command (’ o f f ’) ;

The vDev API also o�ers support for notifications, locations information, the use of other modules, etc.

11.2.4 Comparison

Table 11.1 summarizes the functions of the di�erent APIs.

122

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off

11 Develop Code for Z-Way™

11.3 The Z-Wave Device (JSON) API in detail

This chapter describes the Z-Wave Device API and its use in detail All examples will use the HTTP/JSON API notation.

Please note that the C library notation o�ers equal functionality.

The Z-Wave Device API is the north-bound interface of the Z-Wave Core. This Z-Wave core implement the whole

control logic of the Z-Wave network. The two main functions are

• Management of the network. This includes including and excluding devices, managing the routing and rerouting

of the network an executing some housekeeping functions to keep the network clean and stable. The function

classes can be seen as functions o�ered by the controller itself. Hence the variables and status parameters of

the networks are o�ered by an object called “controller.”

• Execution of commands o�ered by the wireless devices as such switching switches and dimming dimmers. Z-

Wave groups the command and their corresponding variables into so-called command classes. The Z-Wave API

o�ers access to these command classes with their variables and their commands according to the abilities of

the respective device.

The description of function classes and command Cclasses and their access using the JSON API complete the descrip-

tion of the Z-Wave Device API. For a full reference of function classes and command classes please refer to the Annex

E and D.

11.3.1 The data model

Z-Way
™

holds all data of the Z-Way
™

network in a data holder structure. The data holder structure is a hierarchical

tree of data elements.

Following the object-oriented so�ware paradigm the di�erent commands targeting the network or individual devices

are also embedded into the data objects as object methods.

Each data element is handled in a data object that contains the data element and some contextual data.

The Data object

Each Data element such as devices[nodeID].data.nodeId is an object with the following child elements:

• value: the value itself

• name: the name of the data object

• updateTime: timestamp of the last update of this particular value

• invalidateTime: timestamp when the value was invalidated by issuing a Get command to a device and expecting

a Report command from the device

Every time a command is issued that will have impact on a certain data holder value the time of the request is stored

in "invalidateTime". This allows tracking when a new data value is requested from the network and when this new

data value is provided by the network.

This is particularly true if Z-Way
™

is sending a SET command. In this case the data value is invalidated with the

"SET" commands and gets validated back when the result of the GET command was finally stored in the data model.

To maintain compatibility with JavaScript the data object has the following methods implemented:

• valueOf(): this allows to obmit .value in JS code, hence write as an example data.level = 255

• updated(): alias to updateTime

• invalidated(): alias to invalidateTime

These aliases are not enumerated if the dataholder is requested (data.level returns value: 255, name: "level", updated-

Time: 12345678, invalidatedTime: 12345678).

The Data and Method Tree

The root of the data tree has two important child objects:

• controller, this is the data object that holds all data and methods (commands, mainly function classes) related

to the Z-Way
™

controller as such

• devices array, this is the object array that holds the device -specific data and methods (commands, mainly

command classes).

11.3.2 Timing behavior of Z-Wave data

Please note that all status variables accessible on the Z-Wave Device APIs are only proxy of the real value

in the network.

123

11 Develop Code for Z-Way™

Figure 11.2: Z-Way™ Object Tree Structure

124

11 Develop Code for Z-Way™

Figure 11.3: Z-Way™ Timings

To transport data between the real wireless device and the GUI multiple communication instances are involved. The

complexity of this communication chain will be explained in the following example:

Assuming the GUI shows the status of a remote switch and allows changing the switching state of this device. When

the user hits the switching bu�on, he expects to see the result of his action as a changing status of the device in

the GUI. The first step is to hand over the command (SET) from the GUI to Z-Way
™

using the JSON interface. Z-

Way
™

receives the command and will confirm the reception to the GUI. Z-Way
™

recognizes that the execution of

the switching command will likely result in a change of the status variable However Z-Way
™

will not immediately

change the status variable but invalidate the actual value (mark as outdated). This is the correct action because at the

moment when the command was received the status on the remote device has not been changed yet but the status

of the switch is now unknown. If the GUI polls the value it will still see the old value but marked as invalid. Z-Way
™

will now hand over the switching command to the Z-Wave transceiver chip. Since it is possible that there are other

command waiting for execution (sending) by the Z-Wave transceiver chip the job queue is queuing them and will

handle certain priorities if needed. Z-Way
™

has recognized that the command will likely change the status of the

remote device and is therefore adding another command to call the actual status a�er the switching command was

issued. The transceiver is confirming the reception of the command and this confirmation is noted in the job queue.

This confirmation however only means that the transceiver (Z-Wave chip) has accepted the command and does neither

indicate that the remote device has receives it nor even confirming that the remote device has executed accordingly.

The transceiver will now try to send the command wirelessly to the remote device. A successful confirmation of the

reception from the remote device is the only valid indicator that the remote device has received the command (again,

not that it was executed!). The second command (GET) is now transmi�ed the very same way and confirmed by

the remote device. This device will now sent a REPORT command back to Z-Way
™

reporting the new status of the

switching device. Now the transceiver has to confirm the reception. The transceiver will then send the new value to

the Z-Way
™

engine by issuing commands via the serial interface. Z-Way
™

receives the report and will update the

switching state and validate the value. From now on the GUI will receive a new state when polling.

11.3.3 Executing Commands

JSON API allows executing commands on the server side using HTTP POST or GET requests. The command to execute

is taken from the URL.

All functions are executed in form

http://YOURIP:8083/Run/ZWaveAPI*
.

The best way to learn about the commands and the data is to use the Z-Wave Expert User Interface plus a

JavaScript Debugger to see the command the AJAX code of the Z-Wave Expert User Interface sends to the Z-

Way
™

server backend. Additionally the Z-Wave Expert User Interface provides nice and convenient vizualization of

all commends (both command classes and function classes).

All acces ot the webserver require authentication of the user. Please refer to Chapter 13.1 for details how to authen-

ticate.

125

http://YOURIP:8083/Run/ZWaveAPI*

11 Develop Code for Z-Way™

Figure 11.4: Z-Way™ Function Classes

Function Class Commands

Figure 11.4 shows the Controller Info Page in Network menu with a list of all function classes implemented. The

complete reference of the parameters and return values of the functions classes you find in annex E.

Assuming there is a function class “SerialAPIGetInitData” it is possible to call the function by calling the URL

/ZWaveAPI/Run/SerialAPIGetInitData(0)
in the web browser. In case the function was completed successfully, a simple “null” is returned; otherwise, an error

code is provided.

Device Command Class Commands

In the same manner, it is possible to send a command to a device using one of its command classes. The Z-Wave

Expert User Interface provides a general menu item called Expert Commands as shown in Figure 11.5. Z-Way
™

reads out all command classes and its functions and provides here a complete list of command lass-specific commands.

The debug window will reveal the syntax if the complete command class reference in Annex D is not available or too

inconvenient to use.

For example, to switch ON a device no 2 using the command class BASIC, it is possible to write:

/ZWaveAPI/Run/devices[2].instances[0].commandClasses[0x20].Set(255)

or

/ZWaveAPI/Run/devices[2].instances[0].Basic.Set(255)

The Z-Wave Expert User Interface has a JavaScript command

runCmd(<command>)

to simplify such operations. This function is accessible in the JavaScript console of your web browser (in Chrome you

find the JavaScript console under View->Debug->JS Console). Using this feature, the command in JS console would

look like

runCmd(’devices[2].instances[0].Basic.Set(255)’)

The usual way to access a command class is using the format

’devices[nodeId].instances[instanceId]. commandClasses[commandclassId]’. There are ways to simplify the syntax:

• “devices[nodeId].instances[instanceId].Basic” is equivalent to

“devices[nodeId].instances[instanceId].commandClasses[0x20]”

• the instances[0] can be obmi�ed: “devices[nodeId].instances[instanceId].Basic” then turns into “devices[nodeId].Basic”

126

/ZWaveAPI/Run/SerialAPIGetInitData(0)

11 Develop Code for Z-Way™

Figure 11.5: Z-Way™ Expert Command Class Commands

Accessing Data

The data model or data holder object as described is Section 11.3.1 can be accessed completely using the Z-Wave

Expert User Interface . The two bu�ons Show controller Data and Show controllers device data in Network Controller Info of

Z-Wave Expert User Interface as shown in Figure 11.4 lists all variables of the controller as such. One structure

is controller-specific and one other structure is the data of the controller as node of the Z-Wave network. All nodes

of the Z-Wave network have the very same data structure beside their individual array of instances and command

classes per instance. This data model for the individual devices can be access using Configuration > Show Interview results in

Z-Wave Expert User Interface . Figure 11.6 shows this dialog. On the top of the window there is a bu�on with

the devices name. This bu�on reveals the data structure of the individual device as shown in Figure 11.7.

The dialog has the list of all command classes and clicking on the name of the command class will open a sub dialog

showing the data of the commend class. Each command class has some permanent values:

• supported: This indicates if this command classes is supported or controlled only

• version: This is the version number of the command class as detected during the device interview using the

command class “VERSION”

• security: Indicates if this command class is within the security environment

• interviewDone: This flag indicates if the interview of this particular command classes passed

• interviewCounter: This is a helper variable that is counted down on every a�empt to interview the devices. Its

default value is 10. If it reaches 0 (10 unsuccessful a�empts), Z-Way
™

will give up interviewing. This makes

sure that Z-Way
™

is not blocked by devices with wrong implementation not passing interview.

Any data holder object has properties value, updateTime, invalidateTime, name, but for compatibility with JS and pre-

vious versions we have valueOf() method (allows omi�ing .value in JS code, hence write "data.level == 255"), updated

(alias to updateTime), invalidated (alias to invalidateTime).

/ZWaveAPI/Data/<timestamp>

Returns an associative array of changes in Z-Way
™

data tree since <timestamp>. The array consists of (<path>:

<JSON object>) object pairs. The client is supposed to assign the new <JSON object> to the subtree with the

<path> discarding previous content of that subtree. Zero (0) can be used instead of <timestamp> to obtain the full

Z-Way
™

data tree.

The tree have same structure as the backend tree (Figure 11.2) with one additional root element "updateTime" which

contains the time of latest update. This "updateTime" value should be used in the next request for changes. All

127

11 Develop Code for Z-Way™

Figure 11.6: Command Class Inerview overview

128

11 Develop Code for Z-Way™

Figure 11.7: Command Class Variables in Z-Wave Expert User Interface

129

11 Develop Code for Z-Way™

timestamps (including updateTime) corresponds to server local time.

The object looks like:

Listing 11.4: JSON Data Structure

{

" [path from the r o o t] " : [updated s u b t r e e] ,

" [path from the r o o t] " : [updated s u b t r e e] ,

. . .

updateTime : [c u r r e n t t imestamp]

}

Examples for Commands to update the data tree look like:

Get all data: /ZWaveAPI/Data/0

Get updates since 134500000 (Unix timestamp): /ZWaveAPI/Data/134500000

Please note that during data updates some values are updated by big subtrees. For example, in Meter Command Class

value of a scale is always updated as a scale subtree by [scale].val object (containing scale and type descriptions).

/ZWaveAPI/Inspect�eue

This function is used to visualize the Z-Way
™

job queue. This is for debugging only but very useful to understand the

current state of Z-Way
™

engine.

The information given on this page is only relevant for advanced Z-Wave developers and for debugging.

The table shows the active jobs with their respective status and additional information.

Table 11.2 summarizes the di�erent values displayed on the Job �eue visualization. While this info is certainly not

relevant for end users of the system it is a great debug tool.

Handling of updates coming from Z-Way
™

A good design of a user interface is linking UI objects (label, textbox, slider, ...) to a certain path in the tree object.

Any update of a subtree linked to user interface will then update the user interface too. This is called bindings.

For web applications Z-Way
™

contains a library called j�ery.triggerPath (extention of j�ery wri�en by Z-Wave.Me),

that allows making such links between objects in the tree and HTML DOM objects. Use

var tree;

j�ery.triggerPath.init(tree);

during web application initialization to a�ach the library to a tree object. Then run

j�ery([objects selector]).bindPath([path with regexp], [updater function], [additional arguments]);

to make binding between path changes and updater function. The updater function would be called upon changes in

the desired object with this pointing to the DOM object itself, first argument pointing to the updated object in the

tree, second argument is the exact path of this object (fulfilling the regexp) and all other arguments copies additional

arguments. RegExp allows only few control characters: * is a wildcard, (1|2|3) - is 1 or 2 or 3.

Please note that the use of the triggerpath extension is one option to handle the incoming data. You can

also extract all the interesting values right when the data is received and bind update functions to them.

11.4 C-Library API and a general view on the Z-Way
™

file structure

11.4.1 Files in the /zway folder

Z-Way
™

keeps all files in one folder with exception of the log files. In Unix based platforms such as Linux PC,

Raspberry Pi or open WRT the standard install folder is usually /opt/zway-server . The logfile is typically placed in

/var/log/z-way-server.log but this location of the log file can be reconfigured in the config file.

On Windows, the installation wizard asked where to place Z-Way
™

and where to place the log file.

Right a�er installation, the standard folder has the following content:

130

11 Develop Code for Z-Way™

n This column shows the number of sending attempts for a speci�c job.

Z-Way™ tries three times to dispatch a job to the transceiver.

W,S,D: This shows the status of the job. If no indicator is shown the job is in

active state. This means that the controller just tries to execute the job.

“W” states indicated that the controller believes that the target device of

this job is in deep sleep state. Jobs in “W” state will remain in the queue

to the moment when the target device announces its wakeup state by

sending a wakeup noti�cation to the controller. Jobs in “S” state remain

in the waiting queue to the moment the security token for this secured

information exchanged was validated. “D” marks a job as done. The job

will remain in the queue for information purposes until a job garbage

collection removed it from the queue.

ACK: shows if the Z-Wave transceiver has issued an ACK message to con-

�rm that the message was successfully received by the transceiver. This

ACK however does not con�rm that the message was delivered success-

fully. A successful delivery of a message will result in a “D” state of this

particular job. If the ACK �eld is blank, then no ACK is expected. A “.”

indicates that the controller expects an ACK but the ACK was not re-

ceived yet. A “+” indicates that an ACK was expected and was received.

RESP shows if a certain command was con�rmed with a valid response. Com-

mands are either answered by a response or a callback. If the RESP �eld

is blank, then no response is expected. A “.” indicates that the controller

expects a response, but the response has not been received yet. A “+”

indicates that a response was expected and has been received.

Cbk If the Cbk �eld is blank, then no callback is expected. A “.” indicates that

the controller expects a Callback but the Callback was not received yet.

A “+” indicates that a Callback was expected and was received.

Timeout Shows the time left until the job is de queued

Node Id shows the ID of the target node. Communication concerning the net-

work, like inclusion of new nodes, will have the controller nodeID as a

target node ID. For command classes command the node ID of the des-

tination Node is shown. For commands directed to control the network

layer of the protocol, the nodeID is zero.

Description shows a verbal description of the job

Progress shows a success or error message depending on the delivery status of

the message. Since Z-Way™ tries three times to deliver a job up to 3

failure messages may appear. Bu�er: It shows the hex values of the

command sent within this job

Table 11.2: Parameters of the Job Queue Vizualization

131

11 Develop Code for Z-Way™

z-way-server

automation: The JavaScript sub system

config: Various configuration xml files

htdocs: The web servers doc directory

libs: The binary libs such as libzway etc.

libzway Header files for libzway and other libs

modules: binary modules

modules-includes: header file for binary modules

translations: XMLs mapping Ids to text

ZDDX: Device Description Files

z-get-tty-config: Config for utility

ChangeLog

config.xml: Main config file

z-cfg-update: Utility

z-get-tty: Utility

z-way-server: Main Application

config.xml - the main config file

The main config file in the root folder has XML file format. If only allows se�ing the log level (0 = log all, 9 = log almost

nothing), the path to the log file and a debug port if needed. Don’t change the se�ing for automation folder unless

you really know what you do and why.

This is an example for the standard config.xml displaying all log right into the console.

Listing 11.5: con�g.xml

< c o n f i g >

< automation−d i r > automation < / automation−d i r >

< log− f i l e > </ log− f i l e >

< log−l e v e l >0 </ log−l e v e l >

<debug−port >0 </ debug−port >

</ c o n f i g >

config: Various configuration xml files

This subfolder has the following structure:

config

maps: legacy folder

zddx

HOMEID-DeviceData.xml: main storage for Z-Wave structure

Defaults.xml: Default Settings

Profiles.xml

Rules.xml
The file Defaults.xml allows defining

various behavior of Z-Way
™

, among them the appearance of Z-Way
™

as secondary controller:

• AutoConfig: Flag if Z-Way
™

shall interview the device right a�er inclusion (default = 1)

• DeepInterview: Flag that Interview is only completed a�er all values are received back. This includes asking

the device for all initial values of sensor or status data (default = 1)

• SaveDataA�erInterviewSteps: Flag whether or not all device data will be saved a�er each interview step (default

= 1)

• TryToBecomeSIS: Will Z-Way
™

try to become networks SIS if transceiver hardware allows it to (default = 1)?

• SecureInterviewAsInclusionController: Z-Way
™

will initiate interview as Inclusion Controller, if 0 - only as

Primary/SIS

132

11 Develop Code for Z-Way™

• SecureInterviewAcceptedWithoutSchemeInherit: If 1 - Z-Way
™

will not fail secure interview as secondary/in-

clusion controller if Scheme Inherit is not received, if 0 - fail interview as by Z-Wave protocol

• SecureAllCCs: Always use Security if possible (even for CCs allowed as non-secure)

• DeviceReplyTimeout: Delay to wait (in seconds) for a device to reply with a REPORT on a GET command

• DeviceRelaxDelay: Delay between two subsequent packets sent to one device, measured in ticks (10 ms). Some

slow devices might need about 10 to respond correctly to burst of packets

• SerialAPITimeout: Extra time to be added to Serial API timouts. Set up to 1.0-3.0 sec in case of slow channel

toward Z-Wave chip (e.g. in cloud applications)

• Command Class-Specific Se�ings

– Wakeup -> WakeupInterval: Default Wakeup Interval

– Scene Actuator Conf -> Max Scenes: Maximum number of Scenes supported

– Scene Controller Conf -> Max Scenes: Maximum number of Scenes supported

– Protection -> Mode: Default Protection Mode

– SensorMultilevel -> Fahrenheit: Flag what temperature scale is used

– SwitchAll -> Mode: Default Switch All mode

– MultiCmd -> MaxNum: The maximum number of commands within multi-command encapsulation. The

optimal value would be even, but there are many broken devices in the market that do not support this.

A lower number means less e�icient but more robust against faulty devices.

– Firmware Update -> Fragment Size: Fragment size on 3rd gen RaZberry and 3rd gen UZB cannot be more

than 32 (max packet size was 37, with possible CRC it gives 32). On UZB and new 5gen it can be up to 40

bytes

– ThermostatSetPoint: -> Fahrenheit: Flag what temperature scale is used

• Controller: Description of how Z-Way
™

will behave as a device in the network. This entry has the following

subentries:

– NodeInformationFrame: The command class Z-Way
™

is described as “supported” in the network

– SecureNodeInformationFrame: Command Classes available in secure environment

– InstanceNodeInformationFrame: Command Classes in Instances if Multi Channel is emulated

– VersionID =iD: Versions to be reported in Command Class Version Get Command for all Command Classes

announced in NIF

– Name: Default Node Name reported by NodeNaming Report

– Location Default Node Location of Controller reported by NodeNaming Report

– AppVersion: Application Version reported by ManufacturerSpecific Report

– Manufacturer Specific: Values report by ManufacturerSpecific Report

– SpecificDeviceClass: Specific Device Class reported

– GenericDeviceClass: Generic Device Class reported

– Icons: Z-Wave Plus Icons

– Lifeline: Defines how many devices will be in Lifeline Association Group

– CommandClassSupportedVersion: Defines the version numbers of the supported command classes

– Channels: Defines the simulated channels

The file Profiles.xml contains the EnOcean profile definition. This clearly reflects the o�icial profile definitions

published by the EnOcean alliance.

The file Rules.xml is a legacy file.

133

11 Develop Code for Z-Way™

translations: XMLs mapping Ids to text

translations

AEC.xml: Advanced Energy Framework

Alarms.xml: Alarm conditions

BarrierSignals.xml

ColorCapabilities.xml

DeviceClasses.xml: Z-Wave Classic Device Classes

LocEvents.xml: Door Lock Events

Scales.xml: Sensor Multilevel and Meter Scales

SDKIds.xml: Major Minor into SDK versions

ThermostatModes.xml

VendorIds.xml: Vendor Id into Vendor Name

ZWavePlus.xml: Z-Wave Plus Role Types and Network Types

All files in this subfolder are XML files and some of them require local language translations, as described in Chapter

10.3.

ZDDX: Device Description Files

ZDDX files (Z-Wave Device Description XML Files) are XML files containing verbal description of a specific Z-Wave

device that cannot be called from the device itself during the interview process: They are:

• The naming of Association Groups. Modern Z-Wave device provides them in English language using the Asso-

ciation Group Information Command Class. The ZDDX file provides this information for older devices and in

various languages.

• Configuration Parameters and Values: It is always possible to set a configuration value knowing the integer

values from the device manual. Z-Way
™

o�ers a convenient way to set Z-Wave configuration values utilizing

the information from ZDDX files.

• An Image of the device.

• Information on inclusion, exclusion and wakeup processes.

It is possible to add your own ZDDX files, but Z-Way
™

uses an index file ZDDX.indx to access them. Once a new file

is added, run python MakeIndex.py .

Chapter 13.3 explain how to add and to submit new own ZDDX files and how to extend them.

Htdocs: The web servers document folder

htdocs : web server doc folder

config: link from /config into web space

ZDDX: link from /ZDDX into web space

expert: Z-Wave Expert User Interface

smarthome: Smart Home User Interface

translation

index.html

This subfolder is the root folder of the embedded webserver. The index.html redirects to smarthome/index.html.

134

11 Develop Code for Z-Way™

automation: The JavaScript sub system

automation

classes: Some base classes of the JS system

core: The core classes of the JS system

defaultConfigs: A collection of default config.json files

lang: Translations of JS system messages

lib: Some utility scripts of the JS system

modules: The preinstalled apps

userModules: Downloaded apps

uploadModule.sh: Utility to upload own created apps

storage: The central folder to store all user data and settings

configjson-XXXXXXX: Configuration Settings of Smart Home UI

dedevicesjson-XXXXXXX: complete device description in German)

endevicesjson-XXXXXXX: complete device description in English

expertconfigjson-XXXXXXX: Configuration Settings of Expert UI

history-XXXXXXX: Data for 24 hour history display

...: more json files containing data

The subfolder for automation contains the whole JavaScript (JS) subsystem including the

• source code of the so�ware core (classes, core, lib),

• the storage for the apps (modules, user modules),

• the central storage for configs, images, uploads, history, logging, etc.,

• some default files for factory default reset and recovery from failures.

The most sensitive file is configjson-XXX since it contains the information about the user accounts including login

name, password, and recovery email.

For more information about the creation of new modules that will be placed into the user modules, please refer to

Chapter 13.2.

11.4.2 The use of the C-Library

The Z-Way
™

library is a middleware between Sigma Designs Z-Wave transceiver and your application. Z-Way
™

o�ers pre�y high level API to control Z-Wave devices and manage wireless network.

Interaction with the library covers three aspects:

• sending commands to Z-Wave devices;

• sending network management commands to the transceiver;

• receiving updates from the network.

• Sending commands

Every command request generates an outgoing packet (job). Before generating a packet, library will validate pa-

rameters and check whether the command is supported by recipient. In case of failure command will return error

immediately.

Once a job is generated, it is placed into outgoing queue for future send. The queued jobs are handled internally by

Z-Way
™

engine according to commands priorities, nodes states and capabilities, transceiver state etc.

Once the job is sent, it must be first confirmed it was successfully delivered to Z-Wave stack, and then confirmed it

was delivered to recipient. All these operations are performed asynchronously, so command may provide a callback

function to call in case of success or failure if it is needed to know delivery result.

A�er the delivery was confirmed, command is considered executed. If it was a state request command (i.e. SensorMultilevel

Get), response packet may be delayed (or even not sent at all), so command’s success/failure callbacks cannot be used

to get requested state immediately.

Receiving updates

All incoming packets from Z-Wave network are automatically parsed by Z-Way
™

and stored in special variables

called data holders. Data holder is a named variable that stores a value along with its data type and time the value

135

11 Develop Code for Z-Way™

was last updated and "invalidated". Each data holder may also contain a set of child data holders, so they form a

hierarchical data storage. Data holders also support callbacks, so custom code may be executed each time the value

is updated.

For example, level data holder stores dimming level of a dimmer. Once application executes a Get command for

that dimmer, Z-Way
™

will update invalidateTime property on the level data holder, so application knows the

current value is assumed to be outdated, but the new one was not received yet.

Once Z-Way
™

received a packet with new value of the dimmer, it will store it in level data holder and update

updateTime property. Since updateTime is greater that invalidateTime, the value is considered valid now.

Z-Wave device can also send unsolicited state reports to controller (without a request from controller’s side; e.g. due

to local operation or periodically). Due to asynchronous nature of Z-Wave protocol, controller can’t tell whether the

packet was sent unsolicited or it is a response to the previous command. So unsolicited packet will be handled the

same way exactly.

Command Classes

Z-Way
™

inherits structure of Z-Wave protocol and divides data holders and command on di�erent Command Classes

(CC). Command Classes are building blocks of Z-Wave functionality. For example, dimming is provided by Command

ClassSwitchMultilevel, relay operation by Command ClassSwitchBinary, sensors by command classSensorMultilevel

and SensorBinary etc. Please consult Z-Wave protocol basics to understand Z-Wave Command Classes.

All Command Classes share a minimal subset of common data holders:

• supported says if CC is supported by device (it implements that functionality) or only controlled (it can control

other devices implementing that functionality).

• version stores version of the CC. Used internally to know how to deal with that Command Class.

• security tells if CC communications should be encrypted using Z-Wave AES security mechanism.

• interviewDone and interviewCounter describe the status of initial interview process during which Z-Way
™

asks the device about its CC capabilities. If the interview is incomplete, Z-Way
™

might fail to use some Com-

mand Classes with this device. All Z-Wave certified devices MUST pass interview process. All the other data

holders are specific to each Command Class. For example, SwitchMultilevel Command Class contains level

data holder, SensorBinary has two-level storage, grouping data by sensor types: 0 -> sensorTypeString, level,

5 -> sensorTypeString, level, ... where type identifiers are Z-Wave specific constants. Every Z-Wave specific

constant value will have corresponding verbal description (in case of SensorBinary it is in sensorTypeString

data holder).

Some Command Classes are hidden under the hood of Z-Way
™

: MultiCmd, Security, CRC16, MultiChannel, Appli-

cationStatus. They’re handled internally by Z-Way
™

so�ware, and shouldn’t be used directly.

Some Command Classes have no public APIs, but their data holders may be very useful in your application: AssociationGroupInformation,

DeviceResetLocally, ManufacturerSpecific, Version, ZWavePlusInfo.

All the remaing Command Classes have their Get and Set commands specific to functionality of the Command Class.

Consult CommandClassesPublic.h header file for more info about available commands for di�erent Command Classes

and their meaning.

Network management

Z-Way
™

o�ers API for network management operations: include new devices, exclude devices, discover neighbor

devices, remove failed nodes, frequency selection, controller reset etc. These functions are described in ZWayLib.h

header file.

Z-Way
™

also provides a low level access to Z-Wave transceiver functionality through Sigma Designs Serial API.

These functions are provided by Function Classes. You should use them only if you have deep knowledge of Z-Wave

networking. Check FunctionClassesPublic.h for more info.

Using Z-Way
™

Library in C-Code

To use Z-Way
™

one need to include few header files:

i n c l u d e <ZWayLib . h>

i n c l u d e < ZLogging . h>

Z-Way
™

will need to know where to write the log to, so first of all you need to create logging context usingzlog_create()
call. You can disable logging by passing NULL instead of logging context to Z-Way

™
.

Then create new Z-Way
™

context using zway_init(). It will only allocate memory, read log files, initialize internal

structures. At this point you can already a�ach your handlers on new device/instance/Command Class creation (you

will also be able to do it at any time later). Do it using zway_device_add_callback() call.

136

11 Develop Code for Z-Way™

Figure 11.8: Terminal running z-way-test

Warning: you should initialize ZWay pointer with NULL before passing it to zway_init!

Executing zzway_start() will open serial port and start a new thread that will handle all communications with the

transceiver. From now Z-Way
™

can receive packets from the network, but can not parse them yet, since devices were

not discovered yet. All received packets will just be queued to be parsed later a�er discovery process.

Last step to run Z-Way
™

is zway_discover() call. It will start communications with the Z-Wave transceiver and

ask about devices in the network, their capabilities, network state etc. During discovery phase Z-Way
™

will create

structures for all devices and load saved data from file stored in /zddx folder.

From now on, Z-Way
™

is ready to operate. Incoming events will trigger callback functions a�ached by application,

and executing commands will put new packets in the queue.

You will also need few other functions zway_is_running(), zway_is_idle(), zway_stop(), zway_terminate() to handler

termination process.

The link

http://razberry.z-wave.me/fileadmin/z-way-test.tgz
downloads a very simple test project using the Z-Way

™
core library “libzway.so.” The project contains a simple mains.c

plus a Makefile. A Z-Way
™

installation is required too. To compile the test project, some requirements need to be

met:

• GNU-based tool chain with a compiler, linker, etc.

• Copy main.c and Makefile into the root folder of Z-Way
™

• Check the path to library and header files and adapt the Makefile is needed

• Make sure the following libraries are installed:

– libxml2 (apt-get install libxml2-dev)

– libarchive (apt-get install libarchive-dev)

– libcrypto (apt-get install libssl-dev)

Executing the Makefile will generate a binary executable z-way-test in the same folder. If Z-Way
™

was just down-

loaded the code will assume a virtual serial Z-Wave device on /dev/�yUSB0 . if your virtual device is a di�erent

node, just make a symlink like ln -s /dev/�yACM0 /dev/�yUSB0 .

Now start the code from the folder with LD_LIBRARY_PATH=./libs ./z-way-test . The header file “Z-Waylib.h”

in “/libzway” gives a brief explanation of the calls into the library. The demo file main.c demonstrates the use of the

calls. Figure 11.8 shows the small help page of the test so�ware.

137

http://razberry.z-wave.me/fileadmin/z-way-test.tgz

12 The JavaScript Engine

The Z-Way
™

core function engine is the so called JavaScript (JS) automation system. It uses the APIs of the technology-

dependent ’drivers’ and delivers all the functions and interface for running a Smart Home controller:

• It unifies the functions and properties of the physical devices to a common device structure, the virtual

Device (vDev).

• It allows to create own virtual devices not related to physical devices.

• It allows to dynamically load ’plugin’ modules - also wri�en in Javascript or even in native C - that extend the

function of the JS core and deliver furter functionality. Users see these modules as apps. For more information

about apps please refer to chapter 6.

• It organizes the communication between the virtual devices as event bus. Every vDev can inject events into

this bus and every vDev can read events from this bus.

• It provides a higher layer API that is is used among others by the Smart Home User Interface.

This chapter explains the di�erent building blocks of the JS Engine:

• Javascript Interpreter/Compiler Core Engine

• Virtual Devices

• Event Bus

• User Interface elements referring to the di�erent virtual devices

• The structure of the Apps

12.1 The JavaScript Core Interpreter and the integration of the Z-Wave

function

Z-Way
™

uses the JavaScript engine provided by Google referred to as V8. You find more information about this

JavaScript implementation on

https://code.google.com/p/v8/.
V8 implements JavaScript according to the specification ECMA 5

1
.

Please note that this V8 core engine only implements the very basic JS functions and need to be extended to be usable

in a Smart Home environment.

Javascript code can be executed on the server side and certain functions of the JS core are available on the client side

as well since most modern web browsers have a built-in Javascript engine as well. The bridge between the server side

JS and the web browser client is a built-in web server. This is the same embedded web server serving all the web

browsers HTML pages etc.

Accessing a server side JS function from the web browsers client side is easy. Just call

http://YOURIP:8083/JS/Run/*
with the function desired.

Please note that all accesses using the embedded webserver require an authentication of the web browsers instance.

Please refer to chapter 13.1 for details how to authenticate against the web server.

Z-Way
™

o�ers one central object with the name ’zway’ . This object encapsulates all the Z-Wave variables and

functions known from the Z-Wave Device API describes in chapter 11.3.

Hence its possible to use the very same functions of the Z-Wave Device API using the JS engine. The zway objects

internal structure is shown in figure 11.2 and the data elements are describes in Annex 11.3.1.

The functions can be accessed using the web browsers function like

http://YOURIP:8083/JS/Run/zway.devices[x].*
Due to the scripting nature of JavaScript its possible to ’inject’ code at run time using the interface. Here a nice

example how to use the Java Script setInterval function:

Listing 12.1: Polling device #2

/JS/Run/setInterval(function() {

zway.devices[2].Basic.Get();

}, 300∗1000);

1
http://www.ecma-international.org/publications/standards/Ecma-262.htm

138

https://code.google.com/p/v8/.
http://YOURIP:8083/JS/Run/*
http://YOURIP:8083/JS/Run/zway.devices[x].*

12 The JavaScript Engine

This code will, once ’executed’ as URL within a web browser, call the Get() command of the command class Basic of

Node ID 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values of the device tree. they get

then executed when the value changes. Here an example for this binding. The device No. 3 has a command class

SensorMultilevel that o�ers the variable level. The following call - both available on the client side and on the server

side - will bind a simple alert function to the change of the variable.

Listing 12.2: Bind a function

zway.devices[3].SensorMultilevel.data[1].val.bind(function() {

debugPrint(’CHANGED TO: ’ + this.value + ’\n’);

});

12.2 Z-Way
™

extensions to the JavaScript Core

Z-Way
™

provides some extensions to the JS core that are not part of the ECMA functionality mentioned above.

12.2.1 HTTP Access

The JavaScript implementation of Z-Way
™

allows to directly accessing HTTP objects.

The h�p request is much like j�ery.ajax(): r = h�p.request(options);

Here’s the list of options:

• url - required. Url you want to request (might be h�p, h�ps, or maybe even �p);

• method – optional. HTTP method to use (currently one of GET, POST, HEAD). If not specified, GET is used;

• headers – optional. Object containing additional headers to pass to server:

headers: {

"Content−Type": "text/xml",

"X−Requested−With": "RaZberry/1.5.0"

}

• data – used only for POST requests. Data to post to the server. May be either a string (to post raw data) or an

object with keys and values (will be serialized as ’key1=value1&key2=value2&. . . ’);

• auth – optional. Provides credentials for basic authentication. It is an object containing login and password:

auth: {

login: ’username’,

password: ’secret’

}

• contentType – optional. Allows to override content type returned by server for parsing data (see below);

• async – optional. Specifies whether request should be sent asynchronously. Default is false. In case of syn-

chronous request result is returned immediately (as function return value), otherwise function exits immedi-

ately, and response is delivered later thru callbacks.

• success, error and complete – optional, valid only for async requests. Success callback is called a�er success-

ful request, error is called on failure, complete is called nevertheless (even if success/error callback produces

exception, so it is like ’finally’ statement);

Response (as stated above) is delivered either as function return value, or as callback parameter. Is is always an object

containing following members:

• status – HTTP status code (or -1 if some non-HTTP error occurred). Status codes from 200 to 299 are considered

success;

• statusText – status string;

• URL – response URL (might di�er from url requested in case of server redirects);

• headers – object containing all the headers returned by server;

• contentType – content type returned by server;

• data – response data.

Response data is handled di�erently depending on content type (if contentType on request is set, it takes priority over

server content type):

• application/json and text/x-json are returned as JSON object;

• application/xml and text/xml are returned as XML object;

• application/octet-stream is returned as binary ArrayBu�er;

• string is returned otherwise.

139

12 The JavaScript Engine

In case data cannot be parsed as valid JSON/XML, it is still returned as string, and additional parseError member is

present.

h�p.request({

url: "h�p://server.com" (string, required),

method: "GET" (GET/POST/HEAD, optional, default "GET"),

headers: (object, optional)

{

"name": "value",

...

},

auth: (object, optional)

{

"login": "xxx" (string, required),

"password": "∗∗∗" (string, required)

},

data: (object, optional, for POST only)

{

"name": "value",

...

}

−− OR −−
data: "name=value&..." (string, optional, for POST only),

async: true (boolean, optional, default false),

timeout: (number, optional, default 20000)

success: function(rsp) {} (function, optional, for async only),

error: function(rsp) {} (function, optional, for async only),

complete: function(rsp) {} (function, optional, for async only)

});

response:

{

status: 200 (integer, −1 for non−h�p errors),

statusText: "OK" (string),

url: "h�p://server.com" (string),

contentType: "text/html" (string),

headers: (object)

{

"name": "value"

},

data: result (object or string, depending on content type)

}

12.2.2 XML parser

ZXmlDocument object allows to convert any valid XML document into a JSON object and vice versa.

var x = new ZXmlDocument()

Create new empty XML document

x = new ZXmlDocument("xml content")

Create new XML document from a string

140

12 The JavaScript Engine

x.root

Get/set document root element. Elements are got/set in form of JS objects:

{

name: "node_name", − mandatory

text: "value", − optional, for text nodes

a�ributes: { − optional

name: "value",

...

},

children: [− optional, should contain a valid object of same type

{ ... }

]

}

For example:

(new ZXmlDocument(’<weather><city id="1"><name>Zwickau</name>

<temp>2.6</temp></city>

<city id="2"><name>Moscow</name><temp>−23.4</temp></city>

</weather>’)).root =

{

"children":[

{

"children":[

{

"text":"Zwickau",

"name":"name"

},

{

"text":"2.6",

"name":"temp"

}

],

"a�ributes":{

"id":"1"

},

"name":"city"

},

{

"children":[

{

"text":"Moscow",

"name":"name"

},

{

"text":"−23.4",

"name":"temp"

}

],

"a�ributes":{

"id":"2"

},

"name":"city"

}

],

"name":"weather"

}

x.isXML

This hidden readonly property allows to detect if object is XML object or not (it is always true).

x.toString()

Converts XML object into a string with valid XML content.

141

12 The JavaScript Engine

x.findOne(XPathString)

Returns first matching to XPathString element or null if not found.

x.findOne(’/weather/city[@id="2"]’) // returns only city tag for Moscow

x.findOne(’/weather/city[name="Moscow"]/temp/text()’) // returns temperature

x.findAll(XPathString)

Returns array of all matching to XPathString elements or empty array if not found.

x.findAll(’/weather/city’) // returns all city tags

x.findAll(’/weather/city/name/text()’) // returns all city names

XML elements

Each XML element (tag) in addition to properties described above (text, a�ributes, children) have hidden readonly

property parent pointing to parent object and the following methiods:

• insertChild(element) Insert new child eleemnt

• removeChild(element) Remove child element

• findOne(XPathString) Same as on root object, but relative (no leading / needed in XPathString

• findAll(XPathString) Same as on root object, but relative (no leading / needed in XPathString

ZXmlDocument is returned from h�p.request() when content type is ’application/xml’, ’text/xml’ or any other ending

with ’+xml’. Namespaces are not yet supported.

12.2.3 Cryptographic functions

crypto object provides access to some popular cryptographic functions such as SHA1, SHA256, SHA512, MD5, HMAC,

and provides good random numbers.

var guid = crypto.guid()

Provides standard GUID in string format.

var rnd = crypto.random(n)

Generates n random bytes. Returned values is of type ArrayBu�er. To convert it into array use this trick:

rnd = (new Uint8Array(crypto.random(10)));

var dgst = crypto.digest(hash, data, ...)

Returns digest calculated using selected hash algorithm. It supports virtually all the algorithms available in OpenSSL

(md4, md5, mdc2, sha, sha1, sha224, sha256, sha384, sha512, ripemd160). If no data parameters specified, it returns a

digest of an empty value. If more than one data parameters are specified, they’re all used to calculate the result. Data

parameters may be of di�erent types (strings, arrays, ArrayBu�ers). Return value is of type ArrayBu�er.

There are also a few shortcut functions for popular algorithms: ’md5’, ’sha1’, ’sha256’, ’sha512’. For example, these

calls are equivalent:

dgst = crypto.digest(’sha256’, data);

dgst = crypto.sha256(data);

var hmac = crypto.hmac(cipher, key, data, ...)

Returns hmac calculated using selected hash algorithm. Hash algorithms are the same as for digest() function.

Key parameter is required.

If no data parameters specified, it returns a HMAC of an empty value. If more than one data parameters are spec-

ified, they’re all used to calculate the result. Key and data parameters may be of di�erent types (strings, arrays,

ArrayBu�ers). Return value is of type ArrayBu�er.

There are also a few shortcut functions for popular algorithms: ’hmac256’, ’hmac512’. For example, these calls are

equivalent:

142

12 The JavaScript Engine

dgst = crypto.hmac(’sha256’, key, data);

dgst = crypto.hmac256(key, data);

12.2.4 Sockets functions

Socket module allows easy access to TCP and UDP sockets from JavaScript. Both connection to distant ports and

listening on local are available. This API fully mirrors into JavaScript POSIX TCP/IP sockets. This can be used to

control third party devices like Global Cache or Sonos as well as emulating third party services.

To start communications one need to create socket and either connect it or listen it. onrecv method is called on

data receive from remote, while send is used to send data to remote side.

The example below dumps to log file response to h�p://ya.ru:80/ (raw HTTP protocol is used as an example).

var sock = new sockets.tcp();

sock.onrecv = function(data) {

debugPrint(data.byteLength);

};

sock.connect(’ya.ru’, 80);

sock.send("GET / HTTP/1.0\r\n\r\n");

Here is an example of TCP echo server on port 8888:

var sock = new sockets.tcp();

sock.bind(8888);

sock.onrecv = function(data) {

this.send(data);

};

sock.listen();

And echo server for UDP:

var sock = new sockets.udp();

sock.bind(8888);

sock.onrecv = function(data, host, port) {

this.sendto(data, host, port);

};

sock.listen();

Detailed description of Socket API:

• bind(ip, port) or bind(port) binds socket to port (integer number). ip should be a string like "192.168.0.1". If

omited "0.0.0.0" is used (bind on all IP addresses of all interfaces). Returns false on error.

• connect(ip, port) connects to remote side ip:port. TCP sockets requires this call before sending data. For UDP

sockets it is optional, but once used allows to use send call instead of sendto call. Returns false on error.

• listen() starts listening port (this is required not only for TCP, but for UDP too). Returns false on error.

• close() initiate close of socket.

• send(data) sends data to connected or accepted socket.

• sendto(data, host, port) sends data to a non-connected UDP socket.

• onrecv(data, host, port) called on new data receiption from remote side. For UDP sockets and connected TCP

sockets "this" object re�ers to the socket itself, while for accepted TCP sockets "this" re�ers to the client’s

individual objects.

• onconnect(remoteHost, remotePort, localHost, localPort) called only for TCP sockets on new connection accept.

"this" re�ers to the client individual socket object.

• onclose(remoteHost, remotePort, localHost, localPort) called on socket close by remote or due to close() call.

Note that for TCP sockets this callback is called for client sockets on connection close and for binded listening

socket if close() is called. "this" object will be defined like in onrecv.

• reusable() sets SO_REUSEADDR socket option to allow multiple bind() on the same port.

• broadcast() sets SO_BROADCAST socket option to allow sending broadcast UDP messages.

143

12 The JavaScript Engine

• multicastAddMembership(multicastGroup) subscribe socket to multicast group

• multicastDropMembership(multicastGroup) unsubscribe socket from multicast group

12.2.5 WebSockets functions

Socket module also implements WebSockets (RFC 6455). WebSocket API is made to be compatible with browser

implementations (some rarely used functions are not implemented - see below).

The example below implements basic application using WebSockets client:

var sock = new sockets.websocket("ws://echo.websocket.org");

sock.onopen = function () {

debugPrint(’connected, sending ping’);

sock.send(’ping’);

}

sock.onmessage = function(ev) {

debugPrint(’recv’, ev.data);

}

sock.onclose = function() {

debugPrint(’closed’);

}

sock.onerror = function(ev) {

debugPrint(’error’, ev.data);

}

Next example shows basic application using WebSockets server:

var sock = new sockets.websocket(9009);

sock.onconnect = function () {

debugPrint(’client connected, sending ping’);

}

sock.onmessage = function(ev) {

debugPrint(’recv’, ev.data);

sock.send(’pong’);

}

sock.onclose = function() {

if (this === sock) {

debugPrint(’server websocket closed’);

} else {

debugPrint(’client disconnected’);

}

}

sock.onerror = function(ev) {

debugPrint(’error’, ev.data);

}

Detailed description of WebSocket API:

• socket.websocket(url, [protocol], [ssl_ca_filepath], [ssl_cert_filepath, ssl_private_key_filepath]) creates new

client WebSocket and connects to the specified URL (should be a string like "ws://host:port" or "wss://host:port"

for SSL channel). Optional protocol parameter can be used to specify protocol from server capabilities (comma

separated string), default is "default". To use a specific CA file instead of system default use ssl_ca_filepath. To

send client certificate use ssl_cert_filepath and ssl_private_key_filepath.

• socket.websocket(port) creates new WebSocket server on port.

• close() initiate close of WebSocket.

• send(data) sends data to WebSocket. data can be array, ArrayBu�er (sent as binary) or string (sent as text).

• onmessage(event) called on new data receiption from remote side. Object event contains only data property.

Other properties mentioned in RFC 6455 are not supported.

• onopen() or onconnect() called on connection establish. Compared RFC 6455 event parameter is not passed.

144

12 The JavaScript Engine

• onclose() called on WebSocket close by remote or due to close() call. For server side will be called on client

instance and on listening instance (use this to di�erenciate). Note that if close() is called before connection was

established, onclose() is not executed. Compared RFC 6455 event parameter is not passed.

• onerror(event) called on error. For example host or port unreachable. Note that new sockets.websocket(..) can

throw an exception on DNS resolution error or on network unreachable. Other errors will be reported via onerror.

Parameter event contains only propery data. Other properties from RFC 6455 are not implemented.

12.2.6 Other JavaScript Extensions

fs.list(folder)

This returns list of items in the folder or undefined if not folder is not existing.

fs.stat(file)

This returns one of the following values:

• 1) undefined if object does not exist or not readable

• 2) object { type: ’file’, size: <size>} if it is a file

• 3) object { type: ’dir’ } if it is a folder

fs.loadJSON(filename)

This function reads a file from the file system and loads it into the memory. The file must contain a valid JSON object.

The only argument is the name of the file including relative pathname to the automation folder. The functions returns

the full JSON object or null in case of error.

fs.load(filename)

This function reads a file from the file system and returns it’s content as a string. The only argument is the name of

the file including relative pathname to the automation folder. The functions returns null in case of error.

executeFile(filename) and executeJS(string)

Loads and executes a particular JavaScript file from the local filesystem or executes JavaScript code represented in

string (like eval in browsers).

The script is executed withig the global namespace.

Remark: If an error occurred during the execution it won’t stop from further execution, but erroneous script will not be

executed completely. It will stop on the first error. Exceptions in the callee can be trapped in the caller using standard

try-catch mechanism.

system(command)

The command system() allows to execute any shell level command available on the operating system. It will return the

shell output of the command. On default the execution of system commands is forbidden. Each command executed

need to be permi�ed by pu�ing one line with the starting commands in the file automation/.syscommands or in an

di�erent automation folder as specified in config.xml.

Timers

Timers are implemented exactly as they are used in browsers. They are very helpfull for periodical and delayed

operations. Timeout/period is defined in milliseconds.

• timerId = setTimeout(function() , timeout)

• timerId = setInterval(function() , period)

• clearTimeout(timerId)

• clearInterval(timerId)

loadObject(object_name) and saveObject(object_name, object)

Loads and saves JSON object from/to storage. These functions implements flat storage for application with access to

the object by it’s name. No folders are available.

145

12 The JavaScript Engine

Data is saved in automation/storage folder. Filenames are made from object names by stripping characters but [a-

ZA-Z0-9] and adding checksum from original name (to avoid name conflicts).

exit()

Stops JavaScript engine and shuts down Z-Way
™

server

allowExternalAccess(handlerName) and listExternalAccess()

allowExternalAccess allows to register HTTP handler. handlerName can contain strings like aaa.bbb.ccc.ddd - in

that case any HTTP request starting by /aaa/bbb/ccc/ddd will be handled by a function aaa.bbb.ccc.ddd() if present,

otherwise aaa.bbb.ccc(), ... up to aaa(). Handler should return object with at least properties status and body (one can

also specify headers like it was in h�p.request module).

listExternalAccess returns array with names of all registered HTTP handlers.

Here is an example how to a�ach handlers for /what/timeisit and /what:

what = function() {

return { status: 500, body: ’What do you want to know’ };

};

what.timeisit = function() {

return { status: 200, body: (new Date()).toString() }

};

allowExternalAccess("what");

allowExternalAccess("what.timeisit");

debugPrint(object, object, ...)

Prints arguments converted to string to Z-Way
™

console. Very usefull for debuggin. For convenience one can map

’console.log()’ to debugPrint().

This is how it was done in automation/main.js in Z-Way
™

Home Automation engine:

var console = {

log: debugPrint,

warn: debugPrint,

error: debugPrint,

debug: debugPrint,

logJS: function() {

var arr = [];

for (var key in arguments)

arr.push(JSON.stringify(arguments[key]));

debugPrint(arr);

}

};

12.2.7 Debugging JavaScript code

Change in config.xml debug-port to 8183 (or some other) turn on V8 debugger capability on Z-Way
™

start.

<config>

...

<debug−port>8183</debug−port>

....

</config>

node-inspector debugger tool is required. It provides web-based UI for debugging similar to Google Chrome debug

console.

You might want to run debugger tool on another machine (for example if it is not possible to install it on the same

box as Z-Way
™

is running on).

Use the following command to forward debugger port defined in config.xml to your local machine:

ssh -N USER@IP_OF_Z-WAY_MACHINE -L 8183:127.0.0.1:8183 (for RaZberry USER is pi)

Install node-inspector debugger tool and run it:

146

12 The JavaScript Engine

npm install -g node-inspector node-inspector –debug-port 8183

Then you can connect to

http://IP_OF_MACHINE_WITH_NODE_INSPECTOR:8080/debug?port=8183
If debugging is turned on, Z-Way

™
gives you 5 seconds during startup to reconnect debugger to Z-Way

™
(refresh

the page of debugger Web UI withing these 5 seconds). This allows you to debug startup code of Z-Way
™

JavaScript

engine from the very first line of code.

12.3 The virtual device concept (vDev)

A virtual device is a data object within the JS engine. Virtual devices have properties and functions. Most virtual

devices represent a physical device or a part of a physical device but virtual devices are not limited to this. Virtual

devices can be pure dummy device doing nothing but pretenting to be a device (There is an app called ’Dummy

Device’ that works exactly like this). Virtual devices can also connect to services via TCP/IP.

The purpose of virtual devices is to unify the appearance on a graphical user interface and to unify the communication

between them. At the level of virtual devices and EnOcean controller can switch a Z-Wave switch and trigger a rule

in a cloud service.

12.3.1 Names and Ids

Every virtual device is identified by a simple string type id. For all virtual devices that are related to physical Z-Wave

devices the device name is auto-generated by the module (app) ’Z-Wave’ following this logic:

ZWayVDev_[Node ID]:[Instance ID]:[Command Class ID]:[Scale ID] The Node Id is the node id of the phys-

ical device, the Instance ID is the instance id of the device or ’0’ if there is only one instance. The command class

ID refers to the command class the function is embedded in. The scale id is usually ’0’ unless the virtual device is

generated from a Z-Wave device that supports multiple sensors with di�erent scales in one single command class.

Virtual devices not generated by a Z-Wave device may have other Ids. They are either created by other physical device

subsystems such as 433MHz or EnOcean or they are generated by a module (app).

12.3.2 Device Type

Virtual devices can have a certain types. Table shows the di�erent types plus the defines commands. Table 12.1 shows

the list of current device types with their metrics and defines commands.

12.3.3 Access to Virtual Devices

Virtual devices can be access both on the server side using JS modules and on the client side using the JSON API. On

the client they are encoded into a URL style for easier handling in AJAX code. A typical client side command in the

vDev API looks like

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off
’api’ points to the vDev API function, ’v1’ is just a constant to allow future extensions. The devices are referred by a

name that is automatically generated from the Z-Wave Device API. The vDev also unifies the commands ’command’

and the parameters, here ’o�’.

On the server side the very same command would be encoded in a JavaScript style.

Listing 12.3: Access vDevs

vdevId = vdev.id;

vDev = this.controller.devices.get(vdevId);

vDevList = this.controller.devices.filter(function(x) {

return x.get("deviceType") === "switchBinary"; });

vDevTypes = this.controller.devices.map(function(x) {

return x.get("deviceType"); });

147

http://IP_OF_MACHINE_WITH_NODE_INSPECTOR:8080/debug?port=8183
http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off

12 The JavaScript Engine
deviceType Metrics Commands Examples

battery probeTitle,scaleTitle,

level, icon, title

- -

doorlock level, icon, title open or close apiURL/devices/:deviceId/command/open

thermostat scaleTitle, min, max,

level, icon, title

exact with get-param level apiURL/devices/:deviceId/command/exact? level=22.5

switchBinary (Thermo-

stat)

level, icon, title on, o� or update apiURL/devices/:deviceId/command/on

switchBinary level, icon, title on, o� or update apiURL/devices/:deviceId/command/on

switchMultilevel level, icon, title on Set(255), o� Set(0), min Set(10),

max Set(99), increase Set(l+10),

decrease Set(l-10), update, exact +

get params level

apiURL/devices/:deviceId/command/exact? level=40

switchMultilevel (Blinds) level, icon, title up Set(255), down Set(0), up-

Max Set(99), increase Set(l+10),

decrease Set(l-10), startUp

StartLevelChange(0), start-

Down StartLevelChange(1),

stop StopLevelChange(), update,

excactSmooth + get params level

apiURL/devices/:deviceId/command/stop

sensorBinary probeTitle, level, icon, ti-

tle

update apiURL/devices/:deviceId/command/update

sensorMultilevel probeTitle, scaleTitle,

level, icon, title

update apiURL/devices/:deviceId/command/update

toggleButton level, icon, title on apiURL/devices/:deviceId/command/on

camera icon, title depends on installed camera -

could be: zoomIn, zoomOut, up,

down, left, right, close, open

apiURL/devices/:deviceId/zoomIn

switchControl level, icon, title, change on, o�, upstart, upstop,

downstart, downstop, exact with

get-param level

apiURL/devices/:deviceId/command/on

text title, text, icon - -

sensorMultiline multilineType, title, icon,

level, (scaleTitle, ...)

depends on apps apiURL/devices/:deviceId/command/:cmd

switchRGB icon, title, color:

r:255,g:255,b:255,

level on, o�, exact with get-

params: red, green and blue

apiURL/devices/:deviceId/command/exact?

red=20&green=240&blue=0

Table 12.1: vDev device types with metrics and commands

12.3.4 Virtual Device Usage / Commands

In case the virtual device is an actor it will accept and execute a command using the syntax:

Vdev.performCommand(„name of the command“) The name of the accepted command should depend on the

device type and can again be defined free of restrictions when implementing the virtual device. For auto-generated

devices derived from Z-Wave the following commands are typically implemented.

1. ’update’: updates a sensor value

2. ’on’: turns a device on. Only valid for binary commands

3. ’o�’: turns a device o�. Only valid for binary commands

4. ’exact’: sets the device to an exact value. This will be a temperature for thermostats or a percentage value of

motor controls or dimmers

12.3.5 Virtual Device Usage / Values

Virtual devices have inner values. They are called metrics. A metric can be set and get. Each virtual device can define

its own metrics. Metrics can be level, title icon and other device specific values like scale (%, kWh, ...)

vDev . s e t (" m e t r i c s : . . . " , . . .) ;

vDev . g e t (" m e t r i c s : . . . ") ;

12.3.6 How to create your own virtual devices

A Virtual Device (Vdev) is an instance of a VirtualDevice class’ descendant which exposes set of metrics and commands

(according to it’s type/subtype). Virtual devices are the only runtime instances which is controllable and observable

through the JS API.

Technically, VDev is a VirtualDevice subclass which concretize, overrides or extends superclass’ methods.

Step 1. Define a VirtualDevice subclass

// Important: constructor SHOULD always be successful

Ba�eryPollingDevice = function (id, controller) {

148

12 The JavaScript Engine

// Always call superconstructor first

Ba�eryPollingDevice.super_.call(this, id, controller);

// Define VDevs properties

this.deviceType = "virtual";

this.deviceSubType = "ba�eryPolling";

this.widgetClass = "Ba�eryStatusWidget";

// Setup some additional metrics (many of them is se�ed up in a base class)

this.setMetricValue("someMetric", "someValue");

}

inherits(Ba�eryPollingDevice, VirtualDevice);

VDev class should always fill in the deviceType property and o�en fill in the deviceSubType property.

If the particular VDev class can be controller by the client-side widget, it should define widget’s class name in the

widgetClass property.

Step 2. Override performCommand() method

Ba�eryPollingDevice.prototype.performCommand = function (command) {

var handled = true;

if ("update" === command) {

for (var id in zway.devices) {

zway.devices[id].Ba�ery && zway.devices[id].Ba�ery.Get();

}

} else {

handled = false;

}

return handled ? true :

Ba�eryPollingDevice.super_.prototype.performCommand.call(this, command);

}

VDev itself mostly needed to handle commands, triggered by the events, system or the API.

In the example above you could see, that this VDev is capable of performing "update" command. But base class can

be capable of performing some other commands, so the last l ine calls superclass’ performCommand() method if the

particular command wasn’t handled by the VDev itself.

This extensibility provides the possibility to create a VDev class tree. Take a look at ZWaveGate module as an example

of such tree.

Step 3. Instantiate your VDev by the module

// ...part of the Ba�eryPolling.init() method

executeFile(this.moduleBasePath()+"/Ba�eryPollingDevice.js");

this.vdev = new Ba�eryPollingDevice("Ba�eryPolling", this.controller);

First line of code is loads and executes apropriate .js-file which provides Ba�eryPollingDevice class.

Secnd line instantiates this class.

The last line calls controller’s registerDevice method to register and VDev instance.

Step 4. Register device

Listing 12.4: Register Device

vDev = this.controller.devices.create(vDevId, {

deviceType: "deviceType",

metrics: {

level: "level",

icon: "icon from lib or url"

title: "Default title"

}

}, function (command, ...) {

// handles actions with the widget

});

Step 5: Unregister device

Devices can be deleted or unregistered using the following command:

149

12 The JavaScript Engine

this.controller.devices.remove(vDevId)

12.3.7 Binding to metric changes

The metric - the inner variables of the vDev a changed by the system automatically. In order to perform certain

functions on these changes the function needs to be bound to the change to the vdev. The syntax for this is

vDev.on(’change:metrics:...", function (vDev) ...); Unbinding then works as one can expect:

vDev.o�(’change:metrics:...”, function (vDev) ...)

12.4 The event bus

All communication from and to the automation modules is handled by events. An event is a structure containing

certain information that is exchanged using a central distribution place, the event bus. This means that all modules

can send events to the event bus and can listen to event in order to execute commands on them. All modules can ’see’

all events but need to filter out their events of relevance. The core objects of the automation are wri�en in JS and they

are available as source code in the sub folder ’classes’:

• AutomationController.js: This is the main engine of the automation function

• AutomationModule.js: the basic object for the module

The file main.js is the startup file for the automation system and it is loading the three classes just mentioned. The

subfolder /lib contains the key JS script for the Event handling: eventemi�er.js.

12.4.1 Emi�ing events

The ’Event emi�er’ emits events into the central event bus. The event emi�er can be called from all modules and

scripts of the automation system. The syntax is:

controller.emit(eventName, args1, arg2, ...argn)

The event name ’eventName’ has to be noted in the form of ’XXX.YYY’ where ’XXX’ is the name of the event source

(e.g. the name of the module issuing the event or the name of the module using the event) and ’YYY’ is the name

of the event itself. To allow a scalable system it makes sense to name the events by the name of the module that is

supposed to receive and to manage events. This simplifies the filtering of these events by the receiver module(s).

Certain event names are forbidden for general use because they are already used in the existing modules. One example

are events with the name cron.XXXX that are used by the cron module handling all timer related events.

Every event can have a list of arguments developers can decide on. For the events used by preloaded modules (first

and foremost the cron module) this argument structure is predefined. For all other modules the developer is free to

decide on structure and content. It is also possible to have list fields and or any other structure as argument for the

event

One example of an issued event can be

emit(ımymodule.testevent, Test, [ıevent1, event2])

12.4.2 Catching (binding to) events

The controller object, part of every module, o�ers a function called ’on()’ to catch events. The ’on(name, function())’

function subscribes to events of a certain name type. If not all events of a certain name tag shall be processed a further

filtering needs to be implemented processing the further arguments of the event. The function argument contains a

reference to the implementation using the event to perform certain actions. The argument list of the event is handed

over to this function in its order but need to be declared in the function call statement.

this.controller.on(“mymodule.testevent”, function (name,eventarray))

The same way objects can unbind from events:

this.controller.off(“mymodule.testevent”, function (name,eventarray));

12.4.3 Notification and Severity

Notifications are a special kind of event to inform the user on the graphical user interface or out-of-band.. This means

that normal events are typically describes with numbers or ids while notifications contain a human readable message.

The UI can be notified on the certain events.

150

12 The JavaScript Engine

this.controller.addNotification("....severity....", "....message....", "....origin...."); The parameters define

• severity is error, info, debug;

• origin describes which part of the system it is about: core, module, device, ba�ery.

The controller can act on notifications or disable them.

this.controller.on(’notifications.push’, this.handler);

this.controller.o�(’notifications.push’, this.handler);

12.5 Modules (for users called ’Apps’)

Beside the core functions encoded into the JS core there are extensions to this code called modules. Modules extend

the JS core by providing internal or external (visible to the user) functions.

Each modules code is located in a sub directory of the sub folder module as described in chapter 11.4.1. The name

of the subfolder equals the name of the module. The sub folder contains files to define the behavior of the module.

ModuleName

Module.json: The Manifest file of the Module

index.js: The main JS file

htdocs: ressources accessible by the web server

lang: translation into local languages

12.5.1 Module.json

This file contains the module meta-definition used by the AutomationController. It must be a valid JSON object with

the following fields (all of them are required):

• autoload — Boolean, defines will this module automatically instantiated during Home Automation startup.

• singleton — Boolean, defines this module can be instantiated more than one time or not.

• defaults — Object, default module instance se�ings. This object will be patched with the particular config

object from the controller’s configuration and resulting object will be passed to the initializer.

• actions — Object, defines exported module instance actions. Object keys are the names of actions and values

are meta-definitions of exported actions used by AutomationController and API webserver.

• metrics — Object, defines exported module metrics.

All configuration fields are required. Types of the object must be equal in every definition in every case. For instance,

if module doesn’t export any metric corresponding key value should be and empty object “”.

12.5.2 index.js

This script defines an automation module class which is descendant of AutomationModule base class. During initial-

ization the module script must define the variable ’_module’ containing the particular module class.

Example of a minimal automation module:

Listing 12.5: Minimal Module

function SampleModule (id, controller) {

SampleModule.super_.call.init(this, id, controller);

this.greeting = "Hello,World!";

}

inherits(SampleModule, AutomationModule);

_module = SampleModule;

SampleModule.prototype.init = function () {

this.sayHello();

}

SampleModule.prototype.sayHello = function () {

151

12 The JavaScript Engine

debugPrint(this.greeting);

}

SampleModule.prototype.stop = function () {

this.sayByeBye();

}

The first part of the code illustrates how to define a class function named SampleModule that calls the superclass’

constructor. Its highly recommended not to do further instantiations in the constructur. Initializations should be

implemented within the ’init’ function.

The second part of the code is almost immutable for any module. It calls prototypal inheritance support routine and

it fills in _module variable.

The third part of the sample code defines module’s init() method which is an instance initializer. This initializer must

call the superclass’s initializer prior to all other tasks. In the initializer module can setup it’s private environment,

subscribe to the events and do any other stu�. Sometimes, whole module code can be placed withing the initializer

without creation of any other class’s methods. As the reference of such approach you can examine AutoO� module

source code.

A�er the init function a module may contain other functions. The ’sayHello’ function of the Sample Module shows

this as example.

12.5.3 Available Core Modules

All modules in Z-Way
™

are designed the same way using the same file structure but they serve di�erent purposes

and they are of di�erent importance:

• Core Module are modules that provide essential parts of the Z-Way
™

system. They run from the beginning and

should not be terminated without good reason. Normal users will not even see them in the list of active apps.

Users with management privilege can set a checkbox in their My Se�ings to unhide them.

• Standard Modules can be started and stopped by the user. they are already in the subfolder ’modules’ and can

not be deleted.

• Modules from the Online Service must be downloaded first before they can be used. They can be started,

stopped and even removed. They are stored in the folder ’userModules’.

The two core modules are worth to be explained in detail:

Cron, the timer module

All time driven actions need a timer. The Z-Way
™

automation engine implement a cron-type timer system as a module

as well. The basic function of the cron module is

• It accepts registration of events that are triggered periodically

• It allows to de-register such events.

The registration and deregistration of events is also handled using the event mechanism. The cron module is listening

for events with the tags ’cron.addTask’ and ’cron.removeTask’. The first argument of these events are the name of the

event fired by the cron module. The second argument of the ’addTask’ event is an array desricing the times when this

event shall be issued. It has the format:

• Minute [start,stop, step] or 0-59 or null

• Hour [start,stop, step] or 0-23 or null

• weekDay [start,stop, step] or 0-6 or null

• dayOfMonth [start,stop, step] or 1-31 or null

• Month [start,stop, step] or 1-12 or null

The argument for the di�erent time parameters has one of three formats

• null: the event will be fired on every minute or hour etc.

• single value: the event will be fired when the value reaches the given value

• array [start, stop, step]: The event will be fired between start and stop in steps.

The object

{minute : null, hour : null, weekDay : null, day : null,month : null}
will fire every minute within every hour within every weekday on every day of the month every month. Another

example of an event emi�ed towards the cron module for registering an timer event can be found in the Ba�ery

Polling Module:

Listing 12.6: Registering a Battery Polling Command

this.controller.emit("cron.addTask", "ba�eryPolling.poll", {

152

12 The JavaScript Engine

minute: 0,

hour: 0,

weekDay: this.config.launchWeekDay,

day: null,

month: null

});

This call will cause the cron module to emit an event at night (00:00) on a day that is defined in the configuration

variable this.config.launchWeekDay, e.g. 0 = Sunday.

The ’cron.removeTask’ only needs the name of the registered event to deregister.

Z-Wave

The whole mapping of Z-Wave devices into virtual devices is handled by a module called ’ZWave’. This module is

quite powerful. It does not only manage the mapping but handles various Z-Wave specific functions such as timing

recording, etc.

153

13 Special topics for Developers

13.1 Authentication

In order to access API one need to authenticate itself. Z-Way
™

uses sessions to authenticate users. Session can be

obtained by sending login and password in JSON format using POST to URL

/ZAutomation/api/v1/login
User credentials should look like {"login":"admin", "password":"admin"}
In return the session will be sent in two forms:

• as data.sid field in JSON structure,

• as a cookie called ZWAYSession.

Example of successful login will look like:

Listing 13.1: Successful login reply

{

"data": {

"sid": "ba69cb5b−b2fd−5ce0−5b75−9bae3e8bc369",

"id": 1,

"role": 1,

"name": "Administrator",

"lang": "en",

"color": "#dddddd",

"dashboard": [],

"interval": 2000,

"rooms": [

0

],

"hide_all_device_events": false,

"hide_system_events": false,

"hide_single_device_events": []

},

"code": 200,

"message": "200 OK",

"error": null

}

Listing 13.2: Wrong login/password reply

{

"data": null,

"code": 401,

"message": "401 Unauthorized",

"error": "User login/password is wrong."

}

One obtained, the session can be sent to the server via cookie (as set by Z-Way
™

) or via HTTP header.

An elegant way to execute a command using URL including authentication is:

wget –auth-no-challenge –user=admin –password=pwd IP:8083/ZAutomation/api/v1/...

As jquery function the authentication will look like this:

Listing 13.3: Login with jQuery

$(’img’).click(function() {

$.ajax({

url: "h�ps://find.z−wave.me/ZWave.zway/Run/devices[3].Basic.Set(255)",

username: "56033/admin",

password: "pwd",

xhrFields: { withCredentials: true }

});

});

154

/ZAutomation/api/v1/login

13 Special topics for Developers

{ "singleton" : false, Boolean to set if there can be multiple Instances of the mod-

ule allowed or not

"dependencies": [], An array list of all module names from which this module is

dependent. Modules in this list should be ’singleton’.Thew

module cannot be instantiated if at least one of the modules

in the list does not have an instance.

"category": "automation_basics", The app category this module is shown in the

app store. Known app store categories are: ’ba-

sic_gateway_modules’, ’legacy_products_workaround’,

’support_external_ui’, ’support_external_dev’, ’automa-

tion_basic’, ’device_enhancements’, ’developers_stu�’,

’complex_applications’, ’automation’, ’security’, ’periph-

erals’, ’surveillance’, ’logging’, ’scripting’, ’scheduling’,

’climate’, ’environment’, ’scenes’, ’noti�cations’, ’tagging’

"author": "ZWave.Me", Author name of the Module

"homepage": "http://razberry.zwave. me", If you have a news homepage, it can be linked here.

"icon": "icon.png", Name of the icon which is shown for this module on the UI

"moduleName": "AppClassName", Module name have to the same like the class reference

"version": "1.0.0", Version number of this module

"maturity": "beta", Status if the app is still in development or released

"repository": { Repository optional "type":

"git", Kind of the repository "source":

https://github.com/ZWaveMe/ homeautomation

},

Address of the repository

"defaults" : { "title" : "__m_title__", The title placeholder for the Language �les

"description" : { "_m_descr__" }, The description placeholder for the language �les

"schema" : {}, Description of the data structure of the form for instantiat-

ing the module. See explanation of schema for details

"options" : {}} Showing options of the setup form

"description" : { "_m_descr__" }, The description placeholder for the language �les

Table 13.1: Module.json details

13.2 How to write own Apps for Z-Way
™

According to Chapter 12.5 apps have two core files:

• module.js

• index.js

The following chapter explains these two files more in detail.

13.2.1 module.js

Module.js defines the general behavior of the app and the interface to the user side. Table 13.1 shows the structure of

the file module.js with an explanation of each line item.

13.2.2 Schema

The schema is a JSON Structure to define the user interface of the module. It lists all input parameters and options

to be shown in the setup dialog of the app:

Listing 13.4: Schema Structure

{

"schema": {

"type": "object",

"properties": {

}

}

}

155

13 Special topics for Developers

The structure of the schema is the following. Inside the ’properties’ space the single ’properties’ can be defined. They

become the parameter of the module during the initiation and they are shown as configuration parameters in the

setup dialog. There are di�erent types of input parameters:

Primitive data types like integer, float or string

Listing 13.5: Schema Structure Simple Type

{

//Parametername

"name": {

"type": "array",

"items": {

"title": "Device",

"type": "radio",

//array of choosable items

"enum": ["Adult", "Child"],

"default": "Child",

"required": true

}

},

//Parametername

"name": {

"type": "integer",

"required": true

},

}

Name Spaces - Enumerations with a choice

Listing 13.6: Schema Structure Enumerations with a choice

{

//Parametername

"name": {

"field": "enum",

"datasource": "namespaces",

//special namespacedestination

"enum": "namespaces:devices_all:deviceId",

"required": true

},

}

Name spaces refer to the internal Z-Way
™

structure. It allows to list elements from the Z-Way
™

data model and filter

it. The statement "namespaces:devices_all:deviceId" will o�er a selection of all devices.

Namespaces can also be combined like

namespaces:devices_doorlock:deviceId,namespaces:devices_switchBinary:deviceId
which means devices doorlock and all binary switches. Namespaces can also be REST paths like

server:port/v1/namespaces/{devices_DEVICETYPE}.{PATH}

13.2.3 The file index.js

Thew file index.js contains the application as such. It can include other js files is needed but Z-Way
™

will always look

for a index.js file to load first. Table 13.2 list the basic structure of index.js with the minimum functions.

More information e.g. about the list of probe types etc. you find on

http://docs.zwayhomeautomation.apiary.io/

13.3 Write you own Device Description Files

This part of the manual is not yet published because the service for creating own Device Description Files is not yet

available.

156

namespaces:devices_doorlock:deviceId,namespaces:devices_switchBinary:deviceId
server:port/v1/namespaces/{devices_DEVICETYPE}.{PATH}
http://docs.zwayhomeautomation.apiary.io/

13 Special topics for Developers

function AppClassName (id, controller) AppClassName.super_.call(this,

id, controller);

Constructor method: This line is a call of the Supercon-

structor. It has always to be �rst line of the constructor

inherits(AppClassName, AutomationModule); inheration call:

_module = AppClassName; The de�nition of the class reference

AppClassName.prototype.init = function (config)

AppClassName.super_.prototype.init.call(this, config); var self =

this; ;

Initialization method: Variable to refer to in the class in own

methods (this is context dependent in JavaScript). Here

you can register ’listeners’ for the event bus. For details

on event bus please refer to chapter 12.4

AppClassName.prototype.stop = function ()

AppClassName.super_.prototype.stop.call(this);;

Destroy method: Here you have to unregister ’listeners’.

AppClassName.prototype.Methodname= function(parameter) Own Methods: Write your own Methods here.

Table 13.2: Details of index.js

13.4 Extending EnOcean

How to include a new EnOcean Device (example Hoppe Door handle)

(1) Check if the profile is in /opt/z-way-server/config/Profile.xml . Not that you just need to know the profile the

given product supports. There is no way to find out automatically!

Listing 13.7: EnOcean Pro�le Entry

<Profile rorg="0xf6" func="0x10" type="0x00" rorgDescription="RPS Telegram"

funcDescription="Mechanical Handle" typeDescription="Window Handle">

<Field o�set="0" size="4" name="windowHandle" type="int"

description="Movement of the window handle" short="WIN" />

</Profile>

(2) Add the device record of the device to

/opt/z-wave-server/htdocs/smarthome/storage/data/devices_encoean.json . Here the rorg, funcid and type are set.

Now the device record will be created and the right values are changed on message reception. Now you need to make

sure the right element is rendered and updated. This is in /opt/z-wave-server/automation/modules/Enocean/index.js

First add a filter to catch the events and call the correct function:

Listing 13.8: Catch Device IDs

if (matchDevice(0xf6, 0x10, 0x01)) {

// Hoppe Window handle

windowHandle("contact", "window", "Windor Handle");

}

now you add the function that handles the value changes and renders the element accordingly. For the window handle

we use the binary sensor element but overwrite the status information according to the information of the window

handle moves.

Listing 13.9: Handle Device

function windowHandle(dh, type, title) {

var vDev = self.controller.devices.create({

deviceId: vDevIdPrefix + type,

defaults: {

deviceType: ’sensorBinary’,

metrics: {

probeTitle: type,

scaleTitle: ’’,

icon: type,

level: ’’,

title: title

}

},

overlay: {},

handler: function(command) {},

moduleId: self.id

});

157

13 Special topics for Developers

if (vDev) {

self.dataBind(self.gateDataBinding, self.zeno, nodeId, dh,

function(type) {

try {

if (this. handleValue == 13)

vDev.set("metrics:level", "tilt");

if (this. handleValue == 15)

vDev.set("metrics:level", "closed");

if (this. handleValue == 12 || this. handleValue == 14)

vDev.set("metrics:level", "open");

} catch (e) {}

}, "value");

}

}

158

A CE Declarations

159

A CE Declarations

160

B User Interface Fundamentals - Slides

161

B User Interface Fundamentals - Slides

162

C Z-Way
™

Data Model Reference

C.1 Data

This is the description of the data object (called Data Holder or DH).

General note: Z-Way
™

objects and it’s decendents are NOT simple JS objects, but native JS objects, that does not

allow object modification.

• name: Name of data tree element

• updated: Update time

• invalidated: Invalidate time

• valueOf(): Returns value of the object (can be omi�ed to get object value)

• invalidate(): Invalidate data value (mark is as not valid anymore)

• bind(function (type[, arg]) ..., [arg, [watchChildren=false]]): Bind function to a change of data tree element of

its descendants

• unbind(function): Unbind function bind previously with bind()

C.2 JS object zway

• Description: zway is the Z-Wave part of the object tree

• Syntax: zway.X with X as child object

• Child objects

– controller: controller object, see below for details

– devices: devices list, see below for details

– version: Z-Way.JS version

– isRunning(): Check if Z-Way
™

is running

– isIdle(): Check if Z-Way
™

is idle (no pending packets to send)

– discover(): Start Z-Way
™

discovery process

– stop() : Stop Z-Way
™

– Inspect�eue() : Returns list of pending jobs in the queue.

∗ item: [timeout, flags, nodeId, description, progress, payload]

∗ flags: [send count, wait wakeup, wait security, done, wait ACK, got ACK, wait response, got response,

wait callback, got callback]

– ProcessPendingCallbacks(): Process pending callbacks (result of setTimeout/setInterval or functions called

via HTTP JSON API)

– bind(function, bitmask): Bind function to be called on change of devices list/instances list/command

classes list

– unbind(function) : Unbind function previously bind with bind()

– all function classes in E are also methods of this data object

C.3 controller

You can access the data elements of "controller" in the Z-Wave Expert User Interface in menu Network >
Controller Info using the bu�ons Show controller data and Show controller’s device data.

• Description: Controller object

• Syntax: controller.X with X as child object

• Child objects

– data: Data tree of the controller

∗ homeId: Home ID of the controller

∗ nodeId: Node ID of the controller

∗ SISPresent: is SIS available (if TRUE, SUCNodeId is a SIS, otherwise it is SUC)

∗ SUCNodeId: Node ID of SUC or SIS or 0 if no SUC/SIS present

∗ isInOtherNetworks: is controller the original Primary or it is in other’s network

∗ isPrimary: can controller include devices (Primary or Inclusion controller)

163

C Z-Way™ Data Model Reference

∗ isRealPrimary: is controller Primary Controller or SIS in the network

∗ isSUC: is SUC present

∗ libType: Z-Wave library type

∗ frequency: current frequency of the transceiver

∗ controllerState: current network management state of the controller

∗ lastExcludedDevice: Node ID of last excluded device

∗ lastIncludedDevice: Node ID of last included device

∗ secureInclusion: shall inclusion be done using Security

∗ caps: Z-Way
™

license information

∗ so�wareRevisionVersion: version of Z-Way
™

build

∗ so�wareRevisonDate: date of Z-Way
™

build

∗ so�wareRevisionId: git commit of Z-Way
™

build

∗ manufacturerId / manufacturerProductId / manufacturerProductTypeId: IDs to identify the transceiver

hardware

∗ vendor: name of hardware vendor

∗ APIVersion: Version of the Serial API of the transceiver firmware

∗ SDK: Z-Wave SDK version of the transceiver firmware

∗ ZWVersion: ZWave Version (firmware)

∗ ZWaveChip: Serie of the transceiver Z-Wave chip

∗ ZWlibMajor / ZWlibMinor: library version

∗ capabilities: array of Function Class IDs supported by the transceiver firmware

∗ functionClasses: ordered array of IDs of Function Classes

∗ functionClassesNames: ordered array of Names of Function Classes

∗ uuid: Z-Way
™

transceiver firmware unique ID

∗ memoryGetAddress: address of last data stored in memoryGetData read by one of memory read

function

∗ memoryGetData: last data read by one of memory read function

∗ countJobs: shall job be counted (nonManagementJobs and devices[x].data.queueLength)

∗ nonManagementJobs: number of non-management jobs in the queue

∗ deviceRelaxDelay: time in 10ms to wait before sending next command to same device (configurable

in Defaults.xml)

∗ incomingPacket: last incoming packet from Z-Wave network

∗ curSerialAPIAckTimeout10ms: timing parameter of Serial API

∗ curSerialAPIBytetimeout10ms: timing parameter of Serial API

∗ oldSerialAPIAckTimeout10ms: previous timing parameter of Serial API

∗ oldSerialAPIBytetimeout10ms: previous timing parameter of Serial API

Function classes as shown in section E are called als object functions of the data object zway.controller.

C.4 Devices

The devices object contains the array of the device objects. Each device in the network - including the controller itself

- has a device object in Z-Way
™

.

• Description: list of devices

• Syntax: X with X as child object

• Child objects

m : Device object

– length: Length of the list

– SaveData(): Save Z-Way
™

Z-Wave data for hot start on next run (in config/zddx/HOMEID-DevicesData.xml)

C.5 Device

The data object can be accesses in the Z-Wave Expert User Interface in advanced mode of ’Configuration’

• Description: the device object

• Syntax: device[n].X with X as child object

• Child objects

– id: (node) Id of the device

– Data: Data tree of the device

∗ SDK: SDK used in the device firmware

164

C Z-Way™ Data Model Reference

∗ ZDDXMLFile: file of the Devcie Description Record

∗ ZWLib: Z-Wave library used in the device firmware

∗ ZWProtocolMajor / ZWProtocolMinor: Z-Wave protocol version

∗ applicationMajor / ApplicationMinor: Application Version of devices firmware

∗ manufacturerId / manufacturerProductId / manufacturerProductTypeId: ids used to identify the de-

vice

∗ basicType: Z-Wave Basic Type

∗ genericType: Z-Wave Generic Type

∗ specificType: Z-Wave Specific Type

∗ deviceTypeString: verbal Z-Wave Device Class

∗ vendorString: verbal vendor name

∗ nodeInfoFrame: Node Information Frame (NIF) array

∗ isListening: is always listening

∗ isAwake: is currently awake

∗ keepAwake: shall the device be kept awake even if there is nothing to send to it

∗ isRouting: is abale to send routed unsolicited packets

∗ sensor1000: device is a FLiRS with 1000 ms wakeup

∗ sensor250: device is a FLiRS with 250 ms wakeup

∗ isVirtual: is virtual device from a bridge controller

∗ option: are optional Command Classes present in addition to mandatory for this Device Class

∗ infoProtocolSpecific: internal information about the device

∗ neightbours: list of neighbour nodes

∗ givenName: name for Expert UI

∗ isFailed: is failed

∗ failureCount: number of tries since last device failed

∗ lastRecevied: timestamp of last packet received

∗ lastSend: timestamp of last sent operation

∗ lastPacketInfo: structure with deliveryTime, delivered and packetLength information about last packet

sent

∗ queueLength: length of device specific send queue (if countJobs is enabled)

∗ lastNonceGet: internal

– instances: iInstances list of the device

– RequestNodeInformation(): Request NIF

– RequestNodeNeighbourUpdate(): Request routes update

– InterviewForce(): Purge all command classes and start interview based on device’s NIF

– RemoveFailedNode(): Remove this node as failed. Device should be marked as failed to remove it with

this function.

– SendNoOperation(successCallback = NULL, failureCallback = NULL): Ping the device with empty packet

(even if device is not reachable successCallback is called - use isFailed to check device availability)

– LoadXMLFile(file): Load new Z-Wave Device Description XML file. See h�p://pepper1.net/zwavedb/

– GuestXML(): Return the list of all known Z-Wave Device Description XML files with match score. [score,

file name, brand name, product name, photo]

– Wakeup�eue(): Pretend the device is awake and try to send packets

– AssignReturnRoute(target): Send device new routes to target node

– DeleteReturnRoute(): Clear routes in device

– AssignSUCReturnRoute(): Inform device about SUC and route to reach it

C.6 Instances

Each device may have multiple instances (similar functions like switches, same type sensors, ...) If only one instance

is present the id of this instance is 0. Command classes are located in instances only.

• Description: list of instances

• Syntax: device[n].instance[m].X with X as child object

• Child objects

m : instance object

– length: Length of the list

– commandClasses: list of command classes of this instance. In case there is only one instance, this is

equivalent to the list of command classes of the device. For details see below.

– Data: data object of instance

165

C Z-Way™ Data Model Reference

∗ dynamic: flag if instance is dynamic

∗ genericType: generic Z-Wave device class of instance

∗ specificType: specific Z-Wave device class of instance

C.7 CommandClass

This is the Command Class object. It contains public methods and public data elements that are described in chapter

D

• Description: Command Class Implementation

• Syntax: device[n].instance[m].commandclass[id].X with X as child object

• Child objects

– id: Id of the Command Class of the instance of the device

– data: Data tree of the Command Class

∗ interviewCounter: number of a�empts le� until interview is terminate even if not successful

∗ interviewDone: flag if interview of the command class is finished

∗ security: flag if Command Class is operated under Security Command Class

∗ version: version of the Command Class implemented in the device

∗ supported: flag if Command Class is supported or only controlled

∗ commandclass data: Command Class specific data - see chapter D for details.

– name: Command Class name

– Method: Command Class method - see chapter D for details.

166

D Command Class Reference

Command Classes are groups of wireless commands that allow using certain functions of a Z-Wave device. In Z-

Way
™

each Z-Wave device has a data holder entry for each Command Class supported. During the inclusion and

interview of the device the Command Class structure is instantiated in the data holder and filled with certain data.

Command Class commands change values of the corresponding data holder structure. The follow list shows the public

commands of the Command Classes supported with their parameters and the data holder objects changed.

In Z-Wave Expert User Interface navigate to Configuration > Expert Commands to execute commands

of the supported Command Classes and visualizes all data holder elements in as tree in a simplified user interface.

167

D Command Class Reference

D.1 Command Class Basic (0x20/32)

Version 1, Supported and Controlled

The Basic Command Class is the wildcard command class. Almost all Z-Wave devices support this command class

but they interpret it’s commands in di�erent ways. A thermostat will handle a Basic Set Command in a di�erent way

than a Dimmer but both accept the Basic Set command and act. Used for generic interoperability between devices.

You should always use more specific Command Classes where possible.

Data holders:

• level: Generic switching level of the device controlled

Command Basic Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Basic Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

Command Basic Set

Syntax: Set(value, successCallback = NULL, failureCallback = NULL)

Description: Send Basic Set

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

D.2 Command Class Wakeup (0x84/132)

Version 2, Controlled

Allows to manage periodical wakeup of sleeping ba�ery operated device. Upon wakeup device will notify one node

listed in nodeId. NB! If the device can wake up by interrupt (user interaction, bu�on press, sensor trigger), it might

happen that the device never wakes up. This can happen if you wake up the device by interrupe each time before

internal chip wakeup period (usually from 1 to 4 minutes) reaches. (Z-Wave chip can not count for remaining time to

next wakeup, so will restart timer again). This means that strictly speaking you can not rely on long time no wake

up as an indicator of lost/damaged device or ba�ery empty. NB! To save ba�ery it is recommended to tune wakeup

period to one week or even more for devices that do only need to report ba�ery on wakeup (remote controls). For

sensors it is recommended to have at least one hour wakeup period.

Data holders:

• interval: Wakeup interval in seconds

• nodeId: Node to notify about wakeup

• min: Minimal possible wakeup interval

• max: Maximal possible wakeup interval

• default: Factory default wakeup interval

• step: Step for wakeup interval (values are rounded to next or previous step)

• lastWakeup: Last time the device has sent us wake notification (Unix timestamp)

• lastSleep: Last time the device was sent into sleep mode (Unix timestamp)

Command Wakeup Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

168

D Command Class Reference

Description: Send Wakeup Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: interval and nodeId updated

Command Wakeup CapabilitiesGet

Syntax: CapabilitiesGet(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup CapabilityGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: min, max, default, step updated

Command Wakeup Sleep

Syntax: Sleep(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup NoMoreInformation (Sleep)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: lastSleep updated

Command Wakeup Set

Syntax: Set(interval, notificationNodeId, successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup Set

Parameter interval: Wakeup interval in seconds

Parameter notificationNodeId: Node Id to be notified about wakeup

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: interval and nodeId updated

D.3 Command Class NoOperation (0x00/0)

Used to check if device is reachable by sending empty packet.

D.4 Command Class Ba�ery (0x80/128)

Version 1, Controlled

Allows monitoring the ba�ery charging level of a device.

Data holders:

• last: Last ba�ery level reported (0..100%)

• lastChange: Time (UNIX timestamp) when the ba�ery was replaced last time (time of the moment when the

value reported was way bigger than previous one)

• history: Subtree with history

• [% value]: Time when ba�ery level reached this % value (0, 10, 20,... 100)

169

D Command Class Reference

Command Ba�ery Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Ba�ery Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: last updated. lastChange updated if ba�ery level is way higher than it was before, history updated

if reached next 10% step

D.5 Command Class ManufacturerSpecific (0x72/114)

Version 2, Supported and Controlled

Reports vendor information, product type and ID and device serial number.

Data holders:

• vendorId: Vendor ID assigned by Sigma Designs

• vendor: Vendor name

• productId: Product ID

• productType: Product Type ID

• serialNumber: Product Serial Number

Command ManufacturerSpecific Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ManufacturerSpecific Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command ManufacturerSpecific DeviceIdGet

Syntax: DeviceIdGet(type, successCallback = NULL, failureCallback = NULL)

Description: Send ManufacturerSpecific Device Id Get

Parameter type: Device Id type to request

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.6 Command Class Proprietary (0x88/136)

Version 1, Controlled

Allows to transfer manufacturer proprietary data. Data format is manufacturer specific.

Data holders:

• bytes: Binary bytes array of raw data

Command Proprietary Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Proprietary Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

170

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Proprietary Set

Syntax: Set(data, successCallback = NULL, failureCallback = NULL)

Description: Send Proprietary Set

Parameter data: Data to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.7 Command Class Configuration (0x70/112)

Version 1, Controlled

Used to set certian configuration valeus that change the behavior of the device. Z-Wave requires that every device

works out of the box without further configuration. However di�erent configuration value significantly enhance the

value a device. Z-Wave does not provide any information about the configuration values by wireless commands. User

have to look into the device manual to learn about configuration parameters. The Device Description Record (ZDDX),

incoprotated by Z-Way gives information about valid parameters and the meaning of the values to be set.

Data holders:

• [paramId]: Configuration parameter subtree.

• val: Value assigned

• size: Size of that parameter (1, 2 or 4 bytes)

Command Configuration Get

Syntax: Get(parameter, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration Get

Parameter parameter: Parameter number (from 1 to 255)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: parameter subtree updated or created if absent

Command Configuration Set

Syntax: Set(parameter, value, size = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration Set

Parameter parameter: Parameter number (from 1 to 255)

Parameter value: Value to be sent (negative and positive values are accepted, but will be stripped to size)

Parameter size: Size of the value (1, 2 or 4 bytes). Use 0 to guess from previously reported value if any. 0

means use size previously obtained Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: parameter subtree updated or created if absent

Command Configuration SetDefault

Syntax: SetDefault(parameter, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration SetDefault

171

D Command Class Reference

Parameter parameter: Parameter number to be set to device default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: parameter subtree updated or created if absent

D.8 Command Class SensorBinary (0x30/48)

Version 2, Controlled

Allows receive binary sensor states.

Data holders:

• typemask: Internal. Bit mask of the supported types

• [sensorType]: Subtree for sensor type Id

• sensorTypeString: Description of sensor type

• level: Triggered/idle status

Command SensorBinary Get

Syntax: Get(sensorType = -1, successCallback = NULL, failureCallback = NULL)

Description: Send SensorBinary Get

Parameter sensorType: Type of sensor to query information for. 0xFF to query information for the first

available sensor type. -1 to query information for all supported sensor types

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: sensorType subtree updated

D.9 Command Class Association (0x85/133)

Version 2, Supported and Controlled

Allows to manage the association groups: adding and removing nodeIDs in the association groups.

Data holders:

• groups: Number of association groups in the device

• [groupId]: Group subtree, where groupId = 1..groups

• max: Number of nodes the group can hold

• nodes: Array with nodes in the group

• nodesToFollow: Internal

• specificGroup: Number of specific association groups in the device

Command Association Get

Syntax: Get(groupId = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Association Get

Parameter groupId: Group Id (from 1 to 255). 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

172

D Command Class Reference

Command Association Set

Syntax: Set(groupId, includeNode, successCallback = NULL, failureCallback = NULL)

Description: Send Association Set (Add)

Parameter groupId: Group Id (from 1 to 255)

Parameter includeNode: Node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

Command Association Remove

Syntax: Remove(groupId, excludeNode, successCallback = NULL, failureCallback = NULL)

Description: Send Association Remove

Parameter groupId: Group Id (from 1 to 255)

Parameter excludeNode: Node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

Command Association GroupingsGet

Syntax: GroupingsGet(successCallback = NULL, failureCallback = NULL)

Description: Send Association GroupingsGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Update number of supported groups and interview all groups

D.10 Command Class Meter (0x32/50)

Version 4, Controlled

Allows to read di�erent kind of meters. Z-Wave di�erentiates di�erent meter types and di�erent meter scales. Please

refer to the file translations/Scales.xml for details about possible meter types and values.

Data holders:

• scalemask: Internal. Bit mask with supported scales

• rese�able: Flag to indicate of the meter can be rese�ed

• [scaleId]: Meter scale subtree

• scale: Meter scale id

• scaleString: Meter scale name

• sensorType: Sensor type id

• sensorTypeString: Sensor type name

• val: Meter value

• ratetype: Rate type

• delta: Delta from the last value requested

• previous: Previous value requested

Command Meter Get

Syntax: Get(scale = -1, successCallback = NULL, failureCallback = NULL)

Description: Send Meter Get

173

D Command Class Reference

Parameter scale: Desired scale. -1 for all scales

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: scale subtree updated

Command Meter Reset

Syntax: Reset(successCallback = NULL, failureCallback = NULL)

Description: Send Meter Reset

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: scale subtree updated

Command Meter Supported

Syntax: Supported(successCallback = NULL, failureCallback = NULL)

Description: Send Meter SupportedGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.11 Command Class Meter Pulse (0x35/53)

Version 1, Controlled

Allows to gather information from pulse meters.

Data holders:

• val: Meter pulse value

Command MeterPulse Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send MeterPulse Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.12 Command Class SensorMultilevel (0x31/49)

Version 9, Controlled

Allows to read di�erent kind of sensor. Z-Wave di�erentiates di�erent sensor types and di�erent scales of this sensor.

Please refer to the file /translations/scales.xml for details about possible sensor types and values.

Data holders:

• typemask: Internal. Bit mask of the supported types

• [sensorTypeId]: Subtree for sensor type Id

• sensorTypeString: Description of sensor type

• scale: Scale Id

• scaleString: Scale description

174

D Command Class Reference

• val: Value

• size: Internal. Size of the value (1, 2 or 4 bytes)

• precision: Internal. Precision used in value (number of digits a�er decimal dot)

• deviceScale: Internal. Scale Id on the device’s side (if local conversion is used, like C->F)

Command SensorMultilevel Get

Syntax: Get(sensorType = -1, successCallback = NULL, failureCallback = NULL)

Description: Send SensorMultilevel Get

Parameter sensorType: Type of sensor to be requested. -1 means all sensor types supported by the device

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: sensorTypeId subtree updated

D.13 Command Class Sensor Configuration (0x9E/158)

Version 1, Controlled

Allows to configure senors specific configuration like trigger level. Works in conjunction with SensorMultilevel Com-

mand Class. In modern devices replaced by Configuration Command Class.

Data holders:

• sensorType: Sensor type Id

• sensorTypeString: Sensor type descirption

• val: Trigger value

• scale: Scale of trigger value

• scaleString: Scale description

• size: Internal. Size of the value (1, 2 or 4 bytes)

• precision: Internal. Precision used in value (number of digits a�er decimal dot)

Command SensorConfiguration Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SensorConfiguration Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: all dataholders are updated

Command SensorConfiguration Set

Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)

Description: Send SensorConfiguration Set

Parameter mode: Value set mode

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: all dataholders are updated

D.14 Command Class SwitchAll (0x27/39)

Version 1, Supported and Controlled

175

D Command Class Reference

Controls the behavior of a actuator on Switch All commands. Also allows to send Switch All commands.

Data holders:

• mode: Which type of SwitchAll On/O� commands to react on: 0 for none, 1 to reacto on O� only, 2 to react on

On only, 255 to react on both

• onO�: Allows to trigger SwitchAll On/O� commands from other devices. Set to False on O� command received

and True on On command.

Command SwitchAll Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode updated

Command SwitchAll Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set

Parameter mode: SwitchAll Mode: see definitions below

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode updated

Command SwitchAll SetOn

Syntax: SetOn(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set On

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command SwitchAll SetO�

Syntax: SetO�(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set O�

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.15 Command Class SwitchBinary (0x25/37)

Version 1, Supported and Controlled

Allows to control On/O� switches, actuators, electrical power switches and trap On/O� control commands from other

devices.

Data holders:

• level: State: False for O�, True for On

176

D Command Class Reference

Command SwitchBinary Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchBinary Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

Command SwitchBinary Set

Syntax: Set(value, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchBinary Set

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

D.16 Command Class SwitchMultilevel (0x26/38)

Version 1, Supported and Controlled

Allows to control all actuators with multilevel switching functions, primarily Dimmers and Motor Controlling devices

as well as trap dim events sent by remotes.

Data holders:

• level: State 0...99 = 0...100%, 255 for On on last value (or on maximum - device specific)

• startChange: Dimming up or down. Updated on dimming start. Allows to trap events from remotes to con-

troller.

• stopChange: Updated on dimming end. Allows to trap events from remotes to controller.

• prevLevel: Internal

• primary: Unused

• secondary: Unsued

Command SwitchMultilevel Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

Command SwitchMultilevel Set

Syntax: Set(level, duration = 0x�, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel Set

Parameter level: Level to be set

Parameter duration: Duration of change:. 0 instantly. 0x01...0x7f in seconds. 0x80...0xfe in minutes

mapped to 1...127 (value 0x80=128 is 1 minute). 0x� use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

177

D Command Class Reference

Command SwitchMultilevel StartLevelChange

Syntax: StartLevelChange(dir, duration = 0x�, ignoreStartLevel = TRUE, startLevel = 50, incdec = 0, step

= 0x�, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel StartLevelChange

Parameter dir: Direction of change: 0 to incrase, 1 to decrase

Parameter duration: Duration of change:. 0 instantly. 0x01...0x7f in seconds. 0x80...0xfe in minutes

mapped to 1...127 (value 0x80=128 is 1 minute). 0x� use device factory default

Parameter ignoreStartLevel: If set to True, device will ignore start level value and will use it’s curent value

Parameter startLevel: Start level to change from

Parameter incdec: Increment/decrement type for step:. 0 Increment. 1 Decrement. 2 Reserved. 3 No

Inc/Dec

Parameter step: Step to be used in level change in percentage. 0...99 mapped to 1...100%. 0x� uses device

factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

Command SwitchMultilevel StopLevelChange

Syntax: StopLevelChange(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel StopLevelChange

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level updated

D.17 Command Class MultiChannelAssociation (0x8E/142)

Version 3, Supported and Controlled

This is an extention to the Association Command Class. It follows the same logic as the Association Command Class

and has the same commands but accepts di�erent instance values.

Data holders:

• groups: Number of association groups in the device (can be smaller than the number of groups in Association)

• [groupId]: Group subtree, where groupId = 1..groups

• max: Number of nodes/instances the group can hold

• nodesInstances: Array with nodes/instances in the group. Each pair is represented by two elements (node,

instance).

• nodesInstancesToFollow: Internal

Command MultiChannelAssociation Get

Syntax: Get(groupId = 0, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation Get

Parameter groupId: Group Id (from 1 to 255). 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

178

D Command Class Reference

Command MultiChannelAssociation Set

Syntax: Set(groupId, includeNode, includeInstance, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation Set (Add)

Parameter groupId: Group Id (from 1 to 255)

Parameter includeNode: Node to be added to the group

Parameter includeInstance: Instance of the node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

Command MultiChannelAssociation Remove

Syntax: Remove(groupId, excludeNode, excludeInstance, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation Remove

Parameter groupId: Group Id (from 1 to 255)

Parameter excludeNode: Node to be removed from the group

Parameter excludeInstance: Instance of the node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Subtree corresponding to the group updated

Command MultiChannelAssociation GroupingsGet

Syntax: GroupingsGet(successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation GroupingsGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.18 Command Class MultiChannel (0x60/96)

Version 4, Supported and Controlled

Allows to communicate with internal parts of device called channels or instances. Implemented transparently by the

library.

Data holders:

• endPoints: Number of endpoints

• [endPointId]: Endpoint ID

• aggregated: Number of aggregated endpoints

• [endPointId]: Aggregated endpoint ID (numbering starts from endPoints + 1)

• dynamic: Flag describing if endpoins are dynamic (their number and type can change over time)

• identical: Internal. Flag describing if endpoins are identical

• myInstance: Internal

• doneIds: Internal

Command MultiChannel Get

Syntax: Get(ccId, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Get (MultiInstance V1 command). Reports number of channels support-

ing a defined Command Class. Depricated by MutliChannel V2, needed for old devices only

179

D Command Class Reference

Parameter ccId: Command Class Id in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MultiChannel EndpointFind

Syntax: EndpointFind(generic, specific, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Endpoint Find. Note that MultiChannel EndpointFind Report is not

supported as useless. But one can still trap the response packet in logs

Parameter generic: Generic type in search

Parameter specific: Specific type in search

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MultiChannel EndpointGet

Syntax: EndpointGet(successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Endpoint Get. Get the number of available endpoints

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MultiChannel CapabilitiesGet

Syntax: CapabilitiesGet(endpoint, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Capabilities Get. Request information about the specified endpoint

Parameter endpoint: Endpoint in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MultiChannel AggregatedMembersGet

Syntax: AggregatedMembersGet(endpoint, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Aggregated Members Get. Request information about endpoints in the

specified aggregated endpoint (v4 and above)

Parameter endpoint: Aggregated endpoint in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.19 Command Class Node Naming (0x77/119)

Version 1, Controlled

Allows assigning a readable string for a name and a location to a physical device. The two strings are stored inside

the device and can be obtained upon request. There are no restrictions to the name except the maximum length up

to 16 characters.

Data holders:

180

D Command Class Reference

• nodename: Node name

• nameEncoding: NodeNmae encoding

• location: Location

• locationEncoding: Location encoding

Command NodeNaming Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName and GetLocation

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: nodename, nameEncoding, location and locationEncoding updated

Command NodeNaming GetName

Syntax: GetName(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: nodename and nameEncoding updated

Command NodeNaming GetLocation

Syntax: GetLocation(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetLocation

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: location and locationEncoding updated

Command NodeNaming SetName

Syntax: SetName(name, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetName

Parameter name: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: nodename and nameEncoding updated

Command NodeNaming SetLocation

Syntax: SetLocation(location, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetLocation

Parameter location: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: location and locationEncoding updated

181

D Command Class Reference

D.20 Command Class Thermostat SetPoint (0x43/67)

Version 3, Controlled

Allows to set a certain setpoint to a thermostat (set temperature to maintain). The command class can be applied to

di�erent kind of thermostats (heating, cooling, ...), hence it has various modes.

Data holders:

• [modeId]: Subtree for mode

• modeName: Mode description

• scale: Scale Id

• scaleString: Scale description

• val: Temperature to maintain

• setVal: Last set temperature to maintain (might di�er from val until thermostat wakeup)

• min: Minimal temperature value supported by the device

• max: Maximal temperature value supported by the device

• size: Internal. Size of the value (1, 2 or 4 bytes)

• precision: Internal. Precision used in value (number of digits a�er decimal dot)

• deviceScale: Internal. Scale Id on the device side (if local conversion is used, like C->F)

• deviceScaleString: Internal. Scale description of the device

• modemask: Internal. Bit mask with supported modes

• danfossBugFlag: Internal

Command ThermostatSetPoint Get

Syntax: Get(mode = -1, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Get

Parameter mode: Thermostat Mode. -1 requests for all modes

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: modeId subtree updated

Command ThermostatSetPoint Set

Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Set

Parameter mode: Thermostat Mode

Parameter value: temperature

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: modeId subtree updated

D.21 Command Class Thermostat Mode (0x40/64)

Version 3, Controlled

Allows to switch a heating/cooling actuator in di�erent modes.

Data holders:

• modemask: Internal. Bit mask with supported modes

• mode: Current mode

• [modeId]: Mode subtree

• modeName: Mode description

182

D Command Class Reference

Command ThermostatMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatMode Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command ThermostatMode Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatMode Set

Parameter mode: Thermostat Mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.22 Command Class Thermostat Fan Mode (0x44/68)

Version 4, Controlled

Allows to controls fan modes in thermostats.

Data holders:

• modemask: Internal. Bit mask with supported modes

• mode: Current mode

• [modeId]: Mode subtree

• modeName: Mode description

• on: Reports if fan is currently On (True) or O� (False)

Command ThermostatFanMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanMode Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode and on updated

Command ThermostatFanMode Set

Syntax: Set(on, mode, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanMode Set

Parameter on: TRUE to turn fan on (and set mode), FALSE to comletely turn o� (mode is ignored)

Parameter mode: Thermostat Fan Mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode and on updated

D.23 Command Class Thermostat Fan State (0x45/69)

Version 2, Controlled

183

D Command Class Reference

Allows to determine the operating state of the fan. V2 is not yet implemented.

Data holders:

• state: Fan current state (0 O�, 1 Running)

Command ThermostatFanState Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanState Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: state and on updated

D.24 Command Class Thermostat Operating State (0x42/66)

Version 2, Controlled

Allows to determine the operating state of the thermostat and state change history.

Data holders:

• state: Current operation state

• statemask: Internal. Bit mask of supported logs for each state

• [stateId]: Subtree with state log info

• today: Number of minutes thermostat was in this state today (since 0:00)

• yesterday: Number of minutes thermostat was in this state yesterday (since 0:00)

Command ThermostatOperatingState Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatOperatingState Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: state updated

Command ThermostatOperatingState LoggingGet

Syntax: LoggingGet(state, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatOperatingState Logging Get

Parameter state: State number to get logging for. 0 to get log for all supported states

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: stateId subtree updated updated

D.25 Command Class Alarm Sensor (0x9C/156)

Version 1, Controlled

Deprecated Command Class. Now Alarm/Notification is used instead.

Data holders:

• alarmMap: Internal. Bit mask of supported alarm types

184

D Command Class Reference

• alarms: Unused

• [alarmTypeId]: Alarm type subtree

• srcId: Source of event

• sensorState: Alarm state

• sensorTime: Alarm time (according to the sender)

• typeString: Name of alarm type

Command AlarmSensor SupportedGet

Syntax: SupportedGet(successCallback = NULL, failureCallback = NULL)

Description: Send AlarmSensor SupportedGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: List of supported types updated

Command AlarmSensor Get

Syntax: Get(type = -1, successCallback = NULL, failureCallback = NULL)

Description: Send AlarmSensor Get. Requests the status of the alarm sensor of a given type

Parameter type: Alarm type to get. -1 means get all types

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Alarm type subtree updated

D.26 Command Class Door Lock (0x62/98)

Version 2, Controlled

Allows to operate an electronic door lock. This Command Class is ALWAYS encapsulated in Security. Door lock modes

are the following:.

- 0x00 Door Unsecured (Open).

- 0x01 Door Unsecured with timeout.

- 0x10 Door Unsecured for inside Door Handles.

- 0x11 Door Unsecured for inside Door Handles with timeout.

- 0x20 Door Unsecured for outside Door Handles.

- 0x21 Door Unsecured for outside Door Handles with timeout.

- 0xFE Door/Lock Mode Unknown (bolt not fully retracted/engaged).

- 0xFF Door Secured (closed).

Data holders:

• mode: Operating mode of the lock

• insideMode: Bit mask describing if a specific handles (1..4) can open the door from inside

• outsideMode: Bit mask describing if a specific handles (1..4) can open the door from outside

• lockMinutes: Time remaind before autolock (minutes, 0xFE for no autolock)

• lockSeconds: Time remaind before autolock (seconds, 0xFE for no autolock)

• condition: Bit mask describing lock components: bit 0: Door Open(0)/Close(1), bit 1: Bolt Locked(0)/Unlocked(1),

bit 2: Latch Open(0)/Close(1)

• insideState: Bit mask describing if a specific handles (1..4) can open the door from inside

• outsideState: Bit mask describing if a specific handles (1..4) can open the door from outside

• timeoutMinutes: Timeout for autolock (minutes, 0xFE for no autolock)

• timeoutSeconds: Timeout for autolock (seconds, 0xFE for no autolock)

• opType: 0x01 for constant operation, 0x02 for autolock

185

D Command Class Reference

Command DoorLock Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode, insideMode, outsideMode, lockMinutes, lockSeconds and condition updated

Command DoorLock ConfigurationGet

Syntax: ConfigurationGet(successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Configuration Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: insideState, outsideState, timeoutMinutes, timeoutSeconds, opType updated

Command DoorLock Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Set

Parameter mode: Lock mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: mode, insideMode, outsideMode, lockMinutes, lockSeconds and condition updated

Command DoorLock ConfigurationSet

Syntax: ConfigurationSet(opType, outsideState, insideState, lockMin, lockSec, successCallback = NULL,

failureCallback = NULL)

Description: Send DoorLock Configuration Set

Parameter opType: Operation type

Parameter outsideState: State of outside door handle

Parameter insideState: State of inside door handle

Parameter lockMin: Lock a�er a specified time (minutes part)

Parameter lockSec: Lock a�er a specified time (seconds part)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: insideState, outsideState, timeoutMinutes, timeoutSeconds, opType updated

D.27 Command Class Door Lock Logging (0x4C/76)

Version 1, Controlled

Allows to receive reports about all successful and failed activities of the electronic door lock. Event types are the

following:.

- 1 Lock Command: Keypad access code verified lock command.

- 2 Unlock Command: Keypad access code verified unlock command.

- 3 Lock Command: Keypad lock bu�on pressed.

186

D Command Class Reference

- 4 Unlock command: Keypad unlock bu�on pressed.

- 5 Lock Command: Keypad access code out of schedule.

- 6 Unlock Command: Keypad access code out of schedule.

- 7 Keypad illegal access code entered.

- 8 Key or latch operation locked (manual).

- 9 Key or latch operation unlocked (manual).

- 10 Auto lock operation.

- 11 Auto unlock operation.

- 12 Lock Command: Z-Wave access code verified.

- 13 Unlock Command: Z-Wave access code verified.

- 14 Lock Command: Z-Wave (no code).

- 15 Unlock Command: Z-Wave (no code).

- 16 Lock Command: Z-Wave access code out of schedule.

- 17 Unlock Command Z-Wave access code out of schedule.

- 18 Z-Wave illegal access code entered.

- 19 Key or latch operation locked (manual).

- 20 Key or latch operation unlocked (manual).

- 21 Lock secured.

- 22 Lock unsecured.

- 23 User code added.

- 24 User code deleted.

- 25 All user codes deleted.

- 26 Master code changed.

- 27 User code changed.

- 28 Lock reset.

- 29 Configuration changed.

- 30 Low ba�ery.

- 31 New Ba�ery installed.

Data holders:

• maxRecords: Maximum number of records the lock can store. Olded records are reused first.

• [recordId]: Subtree storing log record

• time: Time of the event

• event: Event type

• uId: UserID (from UserCode Command Class)

• eventString: Event type description

Command DoorLockLogging Get

Syntax: Get(record = 0, successCallback = NULL, failureCallback = NULL)

Description: Send DoorLockLogging Get

Parameter record: Record number to get, or 0 to get last records

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: record subtree updated

D.28 Command Class User Code (0x63/99)

Version 1, Controlled

Allows to define individual user entry code in electrnic door lock.

Data holders:

• maxUsers: Maximum number of supported users

187

D Command Class Reference

• [userId]: User subtree

• code: User code

• status: Status of the user: 0 for available (no code set), 1 for occupied (code set), 2 for reserved by admin-

istrator

• hasCode: Flag if a valid code is set (in case device reports occupied, but code is not valid (less than 4

symbols) or code not set but old is still reported by the device)

Command UserCode Get

Syntax: Get(user = -1, successCallback = NULL, failureCallback = NULL)

Description: Send UserCode Get

Parameter user: User index to get code for (1...maxUsers). -1 to get codes for all users

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId subtree updated

Command UserCode Set

Syntax: Set(user, code, status, successCallback = NULL, failureCallback = NULL)

Description: Send UserCode Set

Parameter user: User index to set code for (1...maxUsers). 0 means set for all users

Parameter code: Code to set (4...10 characters long)

Parameter status: Code status to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId subtree updated

Command UserCode SetRaw

Syntax: SetRaw(user, code, status, successCallback = NULL, failureCallback = NULL)

Description: Send UserCode Set (raw)

Parameter user: User index to set code for (1...maxUsers). 0 means set for all users

Parameter code: Code to set (4...10 bytes long)

Parameter status: Code status to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId subtree updated

D.29 Command Class Time (0x8A/138)

Version 2, Supported and Controlled

Allows to report to devices in Z-Wave network time and date as well as time zone o�set and daylight savings param-

eters. The data formats are based on the International Standard ISO 8601.

Command Time TimeGet

Syntax: TimeGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time TimeGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

188

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Time DateGet

Syntax: DateGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time DateGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Time O�setGet

Syntax: O�setGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time TimeO�setGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.30 Command Class Time Parameters (0x8B/139)

Version 1, Controlled

Used to set date and time. Time zone o�set and daylight savings may be set in the Time Command Class. The data

formats are based on the International Standard ISO 8601.

Command TimeParameters Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command TimeParameters Set

Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.31 Command Class Clock (0x81/129)

Version 1, Supported and Controlled

Sync clock on the device with controller system clock.

Command Clock Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

189

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: reported value ignored

Command Clock Set

Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.32 Command Class Scene Activation (0x2B/43)

Version 1, Supported and Controlled

Allows to activate scenes on devices and trap scene activation events from remotes.

Data holders:

• currentScene: Scene activated from remote

• dimmingDuration: Dimming duration for the activated scene

Command SceneActivation Set

Syntax: Set(sceneId, dimmingDuration = 0x�, successCallback = NULL, failureCallback = NULL)

Description: Send SceneActivation Set

Parameter sceneId: Scene Id

Parameter dimmingDuration: Dimming duration

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.33 Command Class Scene Controller Conf (0x2D/45)

Version 1, Controlled

Allows to set scene Id to be activated using SceneActivation Command Class on a remote.

Data holders:

• [groupId]: Subtree for a given association group number (defined by Association Command Class)

• scene: Scene to activate for all devices in the group

• duration: Duration for scene activation

Command SceneControllerConf Get

Syntax: Get(group = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneControllerConf Get

Parameter group: Group Id. 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: group subtree updated

190

D Command Class Reference

Command SceneControllerConf Set

Syntax: Set(group, scene, duration = 0x0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneControllerConf Set

Parameter group: Group Id

Parameter scene: Scene Id

Parameter duration: Duration

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: group subtree updated

D.34 Command Class Scene Actuator Conf (0x2C/44)

Version 1, Controlled

Allows to configure actuators to set specified level on a given scene activation by SceneActivation Command Class.

Data holders:

• [sceneId]: Subtree for scene

• level: Level to set on scene activation

• dimming: Default dimming duration to use

• currentScene: Currently activated scene

Command SceneActuatorConf Get

Syntax: Get(scene = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneActuatorConf Get

Parameter scene: Scene Id. 0 means get current scene

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: scene subtree updated, currentScene updated (if scene = 0)

Command SceneActuatorConf Set

Syntax: Set(scene, level, dimming = 0x�, override = TRUE, successCallback = NULL, failureCallback =

NULL)

Description: Send SceneActuatorConf Set

Parameter scene: Scene Id

Parameter level: Level

Parameter dimming: Dimming

Parameter override: If false then the current se�ings in the device is associated with the Scene Id. If true

then the Level value is used

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: scene subtree updated

D.35 Command Class Indicator (0x87/135)

Version 1, Controlled

191

D Command Class Reference

Operates the indicator on the device if available. Can be used to identify a device or use the indicator for special

purposes (show away/at home mode).

Data holders:

• stat: Status of the indicator

Command Indicator Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Indicator Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: stat updated

Command Indicator Set

Syntax: Set(val, successCallback = NULL, failureCallback = NULL)

Description: Send Indicator Set

Parameter val: Value to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: stat updated

D.36 Command Class Protection (0x75/117)

Version 2, Controlled

Allows to disable local and RF control of the device.

Data holders:

• state: Local control state (0 = Unprotected, 1 = Protected by sequence, 2 = Protected)

• rfState: Control via RF state (0 = Unprotected, 1 = No RF control, 2 = No RF response at all)

• exclusive: Flag describing if exclusive control via RF is supported

• timeout: Flag describing if timeout of protection of control via RF is supported

• stateCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

• rfStateCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

• exclusiveCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

• timeoutCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

Command Protection Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: state, rfState updated

Command Protection Set

Syntax: Set(state, rfState = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Set

Parameter state: Local control protection state

192

D Command Class Reference

Parameter rfState: RF control protection state

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: state and rfState updated

Command Protection ExclusiveGet

Syntax: ExclusiveGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Exclusive Control Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Protection ExclusiveSet

Syntax: ExclusiveSet(controlNodeId, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Exclusive Control Set

Parameter controlNodeId: Node Id to have exclusive control over destination node

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Protection TimeoutGet

Syntax: TimeoutGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command Protection TimeoutSet

Syntax: TimeoutSet(timeout, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Set

Parameter timeout: Timeout in seconds. 0 is no timer set. -1 is infinite timeout. max value is 191 minute

(11460 seconds). values above 1 minute are rounded to 1 minute boundary

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.37 Command Class Schedule Entry Lock (0x4E/78)

Version 3, Controlled

Allows to define individual time intervals for access to a door lock per user. Refers to users defined by User Code

Command Class.

Data holders:

• weekDaySlots: Number of weekday slots supported

• yearSlots: Number of date slots supported

• [userId]: Subtree for userId

• Weekday: Subtree for weekday schedule

193

D Command Class Reference

• [slotId]: Subtree slotId

• dayOfWeek: Day of week

• startHour: Start hour

• startMinute: Start minute

• stopHour: Stop hour

• stopMinute: Stop minute

• Year: Subtree for date schedule

• [slotId]: Subtree slotId

• startYear: Start year

• startMonth: Start month

• startDay: Start day

• startHour: Start hour

• startMinute: Start minute

• stopYear: Stop year

• stopMonth: Stop month

• stopDay: Stop day

• stopHour: Stop hour

• stopMinute: Stop minute

Command ScheduleEntryLock Enable

Syntax: Enable(user, enable, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Enable(All)

Parameter user: User to enable/disable schedule for. 0 to enable/disable for all users

Parameter enable: TRUE to enable schedule, FALSE otherwise

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command ScheduleEntryLock WeekdayGet

Syntax: WeekdayGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Get

Parameter user: User to get schedule for. 0 to get for all users

Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId->Weekday->slotId subtree updated

Command ScheduleEntryLock WeekdaySet

Syntax: WeekdaySet(user, slot, dayOfWeek, startHour, startMinute, stopHour, stopMinute, successCall-

back = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter dayOfWeek: Weekday number (0..6). 0 = Sunday. . 6 = Saturday

Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

194

D Command Class Reference

Report: userId->Weekday->slotId subtree updated

Command ScheduleEntryLock YearGet

Syntax: YearGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Year Get

Parameter user: User to enable/disable schedule for. 0 to get for all users

Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId->Year->slotId subtree updated

Command ScheduleEntryLock YearSet

Syntax: YearSet(user, slot, startYear, startMonth, startDay, startHour, startMinute, stopYear, stopMonth,

stopDay, stopHour, stopMinute, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Year Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter startYear: Year in current century when schedule starts (0..99)

Parameter startMonth: Month when schedule starts (1..12)

Parameter startDay: Day when schedule starts (1..31)

Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopYear: Year in current century when schedule stops (0..99)

Parameter stopMonth: Month when schedule stops (1..12)

Parameter stopDay: Day when schedule stops (1..31)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: userId->Year->slotId subtree updated

D.38 Command Class Climate Control Schedule (0x46/70)

Version 1, Supported and Controlled

Obsolete but still partly implemented for legacy support.

Data holders:

• overrideType: Type of current override

• overrideState: State of override

Command ClimateControlSchedule OverrideGet

Syntax: OverrideGet(successCallback = NULL, failureCallback = NULL)

Description: Send ClimateControlSchedule Override Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

195

D Command Class Reference

Command ClimateControlSchedule OverrideSet

Syntax: OverrideSet(overrideType, overrideState, successCallback = NULL, failureCallback = NULL)

Description: Send ClimateControlSchedule Override Set

Parameter overrideType: Override type to set. (0 – no override, 1 – temporary override, 2 – permanent

override)

Parameter overrideState: Override state. -128 (0x80) ... -1 (0xFF): setpoint -12.8 ... -0.1 degrees. 0 (0x00):

setpoint. 1 (0x01) ... 120 (0x78): setpoint +0.1 ... +12 degrees. 121 (0x79): frost protection. 122 (0x7A):

energy saving. 123 (0x7B) ... 126 (0x7D): reserved. 127 (0x7F): unused

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.39 Command Class MeterTableMonitor (0x3D/61)

Version 2, Controlled

Allows to read historical and accumulated values in physical units from a water meter or other metering device (gas,

electric etc.) and thereby enabling automatic meter reading capabilities.

Data holders:

• adminId: Meter administrator ID

• Id: Customer ID

• rateType: Type of rate (export or import)

• payMeter: Specifies the way the account is done

• meterType: Meter type

• meterTypeString: Meter description

• dataSetMask: Internal. Bit mask with type of data set supported

• dataSetHistoryMask: Internal. Bit mask with type of data set history supported

• maxHistory: Max number of records the device can store

• statusMask: Internal. Bit mask with type of events supported

• maxEvents: Max number of events the device can store

• [dataSetId]: Subtree for data set

• val: Meter value for this data set

• time: Time corresponding to the value

• scale: Scale ID

• scaleString: Scale desctiption

• history: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

• status: Subtree with statuses

• [statuseId]: Subtree with specific status ID

• statusString: Status descirption

• active: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

• time: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

Command MeterTableMonitor StatusDateGet

Syntax: StatusDateGet(maxResults = 0, startDate, endDate, successCallback = NULL, failureCallback =

NULL)

Description: Send StatusTableMonitor Status Get for a range of dates

Parameter maxResults: Maximum number of entries to get from log. 0 means all matching entries

Parameter startDate: Start date and time (local UNIX time)

Parameter endDate: End date and time (local UNIX time)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

196

D Command Class Reference

Command MeterTableMonitor StatusDepthGet

Syntax: StatusDepthGet(maxResults = 0, successCallback = NULL, failureCallback = NULL)

Description: Send StatusTableMonitor Status Get for specified depth

Parameter maxResults: Number of entries to get from log. 0 means current status only. 0xFF means all

entries

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MeterTableMonitor CurrentDataGet

Syntax: CurrentDataGet(setId = 0, successCallback = NULL, failureCallback = NULL)

Description: Send StatusTableMonitor Current Data Get

Parameter setId: Index of dataset to get data for. 0 to get data for all supported datasets

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command MeterTableMonitor HistoricalDataGet

Syntax: HistoricalDataGet(setId = 0, maxResults = 0, startDate, endDate, successCallback = NULL, fail-

ureCallback = NULL)

Description: Send StatusTableMonitor Historical Data Get

Parameter setId: Index of dataset to get data for. 0 to get data for all supported datasets

Parameter maxResults: Maximum number of entries to get from log. 0 means all matching entries

Parameter startDate: Start date and time (local UNIX time)

Parameter endDate: End date and time (local UNIX time)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.40 Command Class Alarm (0x71/113)

Version 5, Controlled

Also known as Notification Command Class. Used to report alarm events from binary sensors. Starting from version

3 all types are strictly defines:.

- 0x01 Smoke.

- 0x02 CO.

- 0x03 CO2.

- 0x04 Heat.

- 0x05 Water.

- 0x06 Access Control.

- 0x07 Burglar.

- 0x08 Power Management.

- 0x09 System.

- 0x0a Emergency.

- 0x0b Clock.

Data holders:

• V1supported: boolean flag saying if version 1 (deprecated) is supported

• V1event : structure to store V1 events

• alarmType: V1 alarm type

197

D Command Class Reference

• level: V1 status

• typeMask: bit mask of supported alarm types

• [typeId]: subtree to store events of specific alarm types

• typeString: name of the alarm type

• status: flag with alarm status (alarm enabled/disabled)

• eventMask: bit mask of supported events of this alarm type

• event: last event ID

• eventString: last event name

• eventParameters: last event parameters

• eventSequence: internal

Command Alarm Get

Syntax: Get(type = 0, event = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Alarm Get. Requests the status of a specific event of a specific alarm type

Parameter type: Type of alarm to get level for. 0 to get level for all supported alarms (v2 and higher). 0xFF

to get level for first supported alarm (v2 and higher)

Parameter event: Notification event to get level for. This argument is ignored prior to Notification v3.

Must be 0 if type is 0xFF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Alarm type subtree updated

Command Alarm Set

Syntax: Set(type, level, successCallback = NULL, failureCallback = NULL)

Description: Send Alarm Set (v2 and higher). Enable/disable alarms of a specific type

Parameter type: Type of alarm to set level for

Parameter level: Level to set (0x0 = o�, 0xFF = on, other values are reserved)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: Alarm type subtree updated

D.41 Command Class PowerLevel (0x73/115)

Version 1, Supported and Controlled

Used to set device power level and to test the link to a other devices in the network.

Data holders:

• level: Current power level (0 for normal power, 1..9 for -1..-9 dBm)

• timeout: Timeout of the power level set (a�er timeout the device turns back to normal power)

• [nodeId]: Subtree with report of a test with nodeId

• status: Current test status (0 = Failed, 1 = Successfully finished, 2 = In progress)

• totalFrames: Total frames sent

• acknowledgedFrames: Acknowledged frames from total sent

Command PowerLevel Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

198

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level and timeout updated

Command PowerLevel Set

Syntax: Set(level, timeout, successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Set

Parameter level: Power level to set (from 0 to 9)

Parameter timeout: Timeout in seconds

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: level and timeout updated

Command PowerLevel TestNodeGet

Syntax: TestNodeGet(successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Test Node Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: subtree with report for the given node updated

Command PowerLevel TestNodeSet

Syntax: TestNodeSet(testNodeId, level, frameCount, successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Test Node Set. Starts sending specified number of NOP packets to a given

device at a given power level. Once finished, unsolicited report MIGHT be sent by the device (at any time

you can use TestNodeGet)

Parameter testNodeId: Node to set test packets to

Parameter level: Power level to use (from 0 to 9)

Parameter frameCount: Number of test frames to send (from 1 to 65535)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: subtree with report for the given node updated

D.42 Command Class Z-Wave Plus Info (0x5E/94)

Version 2, Supported and Controlled

Describes device Z-Wave Plus role and type.

Data holders:

• plusVersion: Z-Wave Plus version

• roleType: Z-Wave Plus role type

• roleTypeString: Z-Wave Plus role type description

• nodeType: Z-Wave Plus node type

• installerIcon: Icon for installer

• userIcon: Icon for user

199

D Command Class Reference

Command ZWavePlusInfo Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ZWave+ Info Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.43 Command Class Firmware Update (0x7A/122)

Version 4, Controlled

Allows to update firmware of the device (OTA, Over-The-Air upgrade).

Data holders:

• upgradeable: Flag representing if the firmware is upgradable

• firmwareCount: Number of firmwares that can be updated using OTA (for multi chip devices, 0 is Z-Wave

chip only)

• updateStatus: Indicated the status of the update process

• waitTime: Time the device will take before rebooting with newly upgraded firmware

• manufacturerId: Manufacturere ID

• firmwareId: Firmware Id

• firmware[n]: Firmware Id of firmware [n]

• checksum: Checksum of the firmware

• fragmentTransmi�ed: Number of fragments transmi�ed (useful to make progress bar)

• fragmentCount: Number of fragments to be transmi�ed in total (useful to make progress bar)

• fragmentSize: Internal

• firmwareData: Internal

Command FirmwareUpdate Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Firmware Metadata Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: upgradeable, firmwareCount, updateStatus, manufacturerId, manufacturerId, firmwareId, firmware[n],

checksum updated

Command FirmwareUpdate Perform

Syntax: Perform(manufacturerId, firmwareId, firmwareTarget, data, successCallback = NULL, failureCall-

back = NULL)

Description: Send Firmware Update Request Get. On process start Z-Way sets fragmentCount:. de-

vices.N.instances.0.commandClasses.122.data.fragmentCount = 3073 (0x00000c01). Then it asks the de-

vice to start the process. The device can refuse it (i.e. if local confirmation timed out). If confirmed, the de-

vice will send us a report with adjusted fragment size (if it wants Z-Way to send by smaller packets) and re-

port "Ready" (updateStatus = 255, see below). devices.N.instances.0.commandClasses.122.data.updateStatus

= 255 (0x000000�). devices.N.instances.0.commandClasses.122.data.fragmentCount = 3277 (0x00000ccd).

At this point fragmentTransmi�ed == 0. devices.N.instances.0.commandClasses.122.data.fragmentTransmi�ed

=0. Then device starts asking Z-Way for di�erent packets. Z-Way will update fragmentTransmi�ed to al-

low track the process. Once done (fragmentCount == fragmentTransmi�ed), the device will send again

a report if the flashing was successful. updateStatus contains the status: checksum error = 0, assemble

error = 1, success, restart manually = 254, success, automatic restart = 255. waitTime refers to the time de-

vice will take to reboot. devices.N.instances.0.commandClasses.122.data.updateStatus = 255 (0x000000�).

devices.N.instances.0.commandClasses.122.data.waitTime = 5 (0x00000005)

Parameter manufacturerId: Manufacturer Id (2 bytes)

200

D Command Class Reference

Parameter firmwareId: Firmware Id (2 bytes)

Parameter firmwareTarget: Firmware target number (0 for main chip, 1..255 for additional chips). Used

only for CC v3 and above

Parameter data: Firmware image data in binary format (use hex2bin to convert from Intel Hex)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: updateStatus, waitTime, fragmentCount, fragmentTransmi�ed updated

D.44 Command Class Association Group Information (0x59/89)

Version 1, Supported and Controlled

Describes association groups defined by Association Command Class and command sent to group members.

Data holders:

• [groupId]: Subtree for grouId

• groupName: Group name

• profile: Group profile Id

• mode: Internal. Reserved.

• eventCode: Internal. Reserved

• commands: Subtree for commands

• [commandClassId]: Command Class Id of the command sent to group members

• [commandId]: Command Id corresponding to Command Class Id

• dynamic: Flag describing if the list can change and periodic request to update information is suggested

Command AssociationGroupInformation GetInfo

Syntax: GetInfo(groupId, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Info

Parameter groupId: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command AssociationGroupInformation GetName

Syntax: GetName(groupId, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Name

Parameter groupId: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command AssociationGroupInformation GetCommands

Syntax: GetCommands(groupId, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Commands

Parameter groupId: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

201

D Command Class Reference

D.45 Command Class SwitchColor (0x33/51)

Version 3, Controlled

Allows to control color for multicolor lights including LED bulbs and LED strips. Device reports it’s capabilities:.

- 0 Warm White (0x00...0xFF: 0...100%).

- 1 Cold White (0x00:...0xFF: 0...100%).

- 2 Red (0x00...0xFF: 0...100%).

- 3 Green (0x00...0xFF: 0...100%).

- 4 Blue (0x00...0xFF: 0...100%).

- 5 Amber (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 6 Cyan (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 7 Purple (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 8 Indexed Color (0x00...0x0FF: Color Index 0...255).

Data holders:

• capabilityMask: Internal. Bit mask with supported capabilities

• [capabilityId]: Subtree for capabilityId

• capabilityString: Capability description

• level: Level of capability

Command SwitchColor Get

Syntax: Get(capabilityId, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchColor Get

Parameter capabilityId: Capability Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command SwitchColor Set

Syntax: Set(capabilityId, state, duration = 0x�, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchColor Set

Parameter capabilityId: Capability Id

Parameter state: State to be set for the capability

Parameter duration: Duration of change:. 0 instantly. 0x01...0x7f in seconds. 0x80...0xfe in minutes

mapped to 1...127 (value 0x80=128 is 1 minute). 0x� use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command SwitchColor SetMultiple

Syntax: SetMultiple(capabilityIds, states, duration = 0x�, successCallback = NULL, failureCallback =

NULL)

Description: Send SwitchColor SetMultiple

Parameter capabilityIds: Array of capabilities to set

Parameter states: Array of state values to be set for the capabilities

Parameter duration: Duration of change:. 0 instantly. 0x01...0x7f in seconds. 0x80...0xfe in minutes

mapped to 1...127 (value 0x80=128 is 1 minute). 0x� use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

202

D Command Class Reference

Command SwitchColor StartStateChange

Syntax: StartStateChange(capabilityId, dir, ignoreStartLevel = TRUE, startLevel = 50, successCallback =

NULL, failureCallback = NULL)

Description: Send SwitchColor StartStateChange

Parameter capabilityId: Capability Id to start changing state for

Parameter dir: Direction of change: 0 to incrase, 1 to decrase

Parameter ignoreStartLevel: If set to True, device will ignore start level value and will use it’s curent value

Parameter startLevel: Start level to change from

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command SwitchColor StopStateChange

Syntax: StopStateChange(capabilityId, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchColor StopStateChange

Parameter capabilityId: Capability Id to stop changing state for

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.46 Command Class BarrierOperator (0x66/102)

Version 1, Controlled

Allows to control barriers and garage doors as well as their signal lamps.

Data holders:

• state: Barrier state

• signalMask: Internal. Bit mask of available signals

• [signalId]: Subtree for signal

• signalTypeString: Signal description

• state: Signal state

Command BarrierOperator Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send BarrierOperator Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command BarrierOperator Set

Syntax: Set(state, successCallback = NULL, failureCallback = NULL)

Description: Send BarrierOperator Set

Parameter state: State to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

203

D Command Class Reference

Command BarrierOperator SignalGet

Syntax: SignalGet(signalType, successCallback = NULL, failureCallback = NULL)

Description: Send BarrierOperator Signal Get

Parameter signalType: Signal subsystem type to get state for

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Command BarrierOperator SignalSet

Syntax: SignalSet(signalType, state, successCallback = NULL, failureCallback = NULL)

Description: Send BarrierOperator Signal Set

Parameter signalType: Signal subsystem type to set state for

Parameter state: State to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.47 Command Class SimpleAVControl (0x94/148)

Version 4, Supported and Controlled

Allows to control A/V devices.

Data holders:

• bitmask: Bit mask with supported keys. Refer to Expert UI pyzw_zwave.js or Sigma Designs documentation

for description of bu�ons.

• bitmasks: Internal

• sequenceNumber: Internal

• reportsNumber: Internal

Command SimpleAVControl Set

Syntax: Set(keyA�ribute, avCommand, successCallback = NULL, failureCallback = NULL)

Description: Send SimpleAVControl Set

Parameter keyA�ribute: 0 for key Down, 1 for key Up, 2 for key Alive (repeated every 100...200 ms)

Parameter avCommand: Command to be sent. One of 465 predefined in Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

D.48 Command Class Security (0x98/152)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library. There are no functions to execute.

Data holders:

• controller->data->secureControllerId: Node Id of secure controller: node that established secure channel

when we are secondary controller (this data is on controller data tree)

• device->data->secureChannelEstablished: Flag describing if security interview was successful and secure

channel is established (this data is on device data tree)

• secureNodeInfoFrame: Secure Node Information Frame

204

D Command Class Reference

• securityAbandoned: Security interview failed

• scheme: Secure scheme supported

• securityRequested: Internal

• rNonce: Internal

• rNonceAckWait: Internal

• canStream: Internal

• firstPart: Internal

• sequenceId: Internal

• toFollow: Internal

D.49 Command Class CRC16 (0x56/86)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to use be�er 16 bits packet checksum. There are no

functions to execute.

Data holders:

• crc16Requested: Internal

D.50 Command Class MultiCmd (0x8F/143)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to save ba�ery life time. There are no functions to

execute.

Data holders:

• maxNum: Max number of packets to be encapsulated. Can be tunned to lower (to workaround buggy devices,

1 to turn o�) or rise (to get be�ery performance)

D.51 Command Class Supervision (0x6C/108)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to guarantee delivery report on every command

(even on Set). There are no functions to execute.

Data holders:

• [sessionId]: Subtree with session status

• status: Current session status (0 = Not supported, 1 = Working, 2 = Fail, 3 = Busy, 255 = Success)

• duration: Expected time to finish the operation

• moreStatusUpdates: True if more updates on the session status are expected

• lastSession: Internal

D.52 Command Class Application Status (0x22/34)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to retry on device Busy report. There are no functions

to execute.

205

D Command Class Reference

D.53 Command Class Version (0x86/134)

Version 2, Supported and Controlled

Allows to get version of each Command Class supported by the device as well as firmware version.

Data holders:

• commandClass->data->version: Version of specific Command Class (this data is on Command Class data

tree)

• ZWLib: SDK library type

• ZWProtocolMajor: SDK version major

• ZWProtocolMinor: SDK version minor

• SDK: SDK description

• applicationMajor: Application version major

• applicationMinor: Application version minor

• hardwareVersion: Hardware revision of the device

• firmwareCount: Number of chips (firmwares) in the device (excluding Z-Wave chip)

• [firmwareId]: Subtree for firmwareId information

• major: Additional chip application version major

• minor: Additional chip application version major

D.54 Command Class DeviceResetLocally (0x5A/90)

Version 1, Supported and Controlled

Reports to the controller that device was rese�ed locally (using local bu�on operation).

Data holders:

• reset: Becomes True if the device sent us DeviceResetLocally notification. This means the device is certainly

not in our network anymore

D.55 Command Class Central Scene (0x5B/91)

Version 3, Supported and Controlled

Allows to receive central controller oriented scene actions. Scenes are triggered by pushing a bu�on on a remote

control or wall controller. Note that Z-Way supports only V1, but in most cases you don’t need it to be enabled in the

NIF. Controlled version is V3.

Data holders:

• maxScenes: Number of scenes supported

• slowRefreshSupport: Flag to indicate if the device supports Slow Refresh mode

• slowRefresh: Flag to indicate if the device is currently in Slow Refresh mode

• currentScene: Last activated scene

• keyA�ribute: Bu�on (or key) action: 0 for key press, 1 for key release, 2 for key held down (should bre repeated

at least every 200ms)

• sequence: Internal. To ignore duplicate packats.

• sceneSupportedKeyA�ributesMask: Holds the list of supported key a�ributes for each scene

• [sceneId]: Array of supported key a�ributes for Scene Id: 0 for 1 press, 1 for release a�er hold, 2 for hold,

3..6 for 2..5 presses

206

E Function Class Reference

207

E Function Class Reference

Function Class GetSerialAPICapabilities

Syntax: GetSerialAPICapabilities(successCallback = NULL, failureCallback = NULL)

Description: Request Serial API capabilities

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: capabilities, manufacturerId, manufacturerProductId, manufacturerProductType, APIVersion, ven-

dor

Function Class SerialAPISetTimeouts

Syntax: SerialAPISetTimeouts(ackTimeout, byteTimeout, successCallback = NULL, failureCallback = NULL)

Description: Set Serial API timeouts

Parameter ackTimeout: Time for the stick to wait for ACK (in 10ms units)

Parameter byteTimeout: Time for the stick to assemble a full packet (in 10ms units)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: curSerialAPIAckTimeout10ms, curSerialAPIByteTimeout10ms, oldSerialAPIAckTimeout10ms, old-

SerialAPIByteTimeout10ms

Function Class SerialAPIGetInitData

Syntax: SerialAPIGetInitData(successCallback = NULL, failureCallback = NULL)

Description: Request initial information about devices in network

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: ZWVersion, ZWaveChip, list of Z-Wave devices is generated

Function Class SerialAPIApplicationNodeInfo

Syntax: SerialAPIApplicationNodeInfo(listening, optional, flirs1000, flirs250, genericClass, specificClass,

nif, successCallback = NULL, failureCallback = NULL)

Description: Set controller node information

Parameter listening: Listening flag

Parameter optional: Optional flag (set if device supports more CCs than described as mandatory for it’s

Device Type)

Parameter flirs1000: FLiRS 1000 flag (hardware have to be based on FLiRS library to support it)

Parameter flirs250: FLiRS 250 flag (hardware have to be based on FLiRS library to support it)

Parameter genericClass: Generic Device Type

Parameter specificClass: Specific Device Type

Parameter nif: New NIF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class WatchDogStart

Syntax: WatchDogStart(successCallback = NULL, failureCallback = NULL)

Description: Start WatchDog

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

208

E Function Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class WatchDogStop

Syntax: WatchDogStop(successCallback = NULL, failureCallback = NULL)

Description: Stop WatchDog

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class GetHomeId

Syntax: GetHomeId(successCallback = NULL, failureCallback = NULL)

Description: Request Home Id and controller Node Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: homeId, nodeId

Function Class GetControllerCapabilities

Syntax: GetControllerCapabilities(successCallback = NULL, failureCallback = NULL)

Description: Request controller capabilities (primary role, SUC/SIS availability)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: isInOthersNetwork, isPrimary, isRealPrimary, isSUC, isSUC, SISPresent

Function Class GetVersion

Syntax: GetVersion(successCallback = NULL, failureCallback = NULL)

Description: Request controller hardware version

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: ZWLib, ZWProtocolMajor, ZWProtocolMinor, libType, SDK, devices[ctrlId].data.ZWLib, devices[ctrlId].data.ZWProtocolMajor,

devices[ctrlId].data.ZWProtocolMinor, devices[ctrlId].data.SDK

Function Class GetSUCNodeId

Syntax: GetSUCNodeId(successCallback = NULL, failureCallback = NULL)

Description: Request SUC Node Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: SUCNodeId

Function Class EnableSUC

Syntax: EnableSUC(enable, sis, successCallback = NULL, failureCallback = NULL)

Description: Enable or disable SUC/SIS functionality of the controller

Parameter enable: True to enable functionality, False to disable

Parameter sis: True to enable SIS functionality, False to enable SUC only

209

E Function Class Reference

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SetSUCNodeId

Syntax: SetSUCNodeId(nodeId, enable, sis, successCallback = NULL, failureCallback = NULL)

Description: Assign new SUC/SIS or disable existing

Parameter nodeId: Node Id to be assigned/disabled as SUC/SIS

Parameter enable: True to enable, False to disable

Parameter sis: True to assign SIS role, False to enable SUC role only

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class MemoryGetByte

Syntax: MemoryGetByte(o�set, successCallback = NULL, failureCallback = NULL)

Description: Read single byte from EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: memoryGetData, memoryGetAddress

Function Class MemoryGetBu�er

Syntax: MemoryGetBu�er(o�set, length, successCallback = NULL, failureCallback = NULL)

Description: Read multiple bytes from EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter length: Number of byte to be read

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: memoryGetData, memoryGetAddress

Function Class MemoryPutByte

Syntax: MemoryPutByte(o�set, data, successCallback = NULL, failureCallback = NULL)

Description: Write single byte to EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter data: Byte to be wri�en

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class MemoryPutBu�er

Syntax: MemoryPutBu�er(o�set, data, successCallback = NULL, failureCallback = NULL)

Description: Write multiple bytes to EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter data: Bytes to be wri�en

210

E Function Class Reference

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class NVMGetId

Syntax: NVMGetId(successCallback = NULL, failureCallback = NULL)

Description: Read type of extended EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: memoryCapacity, memoryManufacturerId, memoryType

Function Class NVMExtReadLongByte

Syntax: NVMExtReadLongByte(o�set, successCallback = NULL, failureCallback = NULL)

Description: Read single byte from extended EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: memoryGetData, memoryGetAddress

Function Class NVMExtReadLongBu�er

Syntax: NVMExtReadLongBu�er(o�set, length, successCallback = NULL, failureCallback = NULL)

Description: Read multiple bytes from exended EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter length: Number of byte to be read

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: memoryGetData, memoryGetAddress

Function Class NVMExtWriteLongByte

Syntax: NVMExtWriteLongByte(o�set, data, successCallback = NULL, failureCallback = NULL)

Description: Write single byte to extended EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter data: Byte to be wri�en

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class NVMExtWriteLongBu�er

Syntax: NVMExtWriteLongBu�er(o�set, data, successCallback = NULL, failureCallback = NULL)

Description: Write multiple bytes to extended EEPROM

Parameter o�set: O�set in application memory in EEPROM

Parameter data: Bytes to be wri�en

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

211

E Function Class Reference

Function Class IsFailedNode

Syntax: IsFailedNode(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Checks if node is failed

Parameter nodeId: Node Id to be checked

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: device[node_id].data.isFailed

Function Class SendDataAbort

Syntax: SendDataAbort(successCallback = NULL, failureCallback = NULL)

Description: Abort send data. Note that this function works unpredictably in multi callback environment

!

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SerialAPISo�Reset

Syntax: SerialAPISo�Reset(successCallback = NULL, failureCallback = NULL)

Description: So� reset. Restarts Z-Wave chip

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SendData

Syntax: SendData(nodeId, data, description = NULL, successCallback = NULL, failureCallback = NULL)

Description: Send data. Packets are sent in AUTO_ROUTE mode with EXPLRER_FRAME enabled for

listening devices (ignored if not supported by the hardware [based on 5.0x branch])

Parameter nodeId: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)

Parameter data: Paket payload

Parameter description: Packet description for queue inspector and logging

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.lastSend

Function Class SendDataSecure

Syntax: SendDataSecure(nodeId, data, description = NULL, keyClass = 0, successCallback = NULL, fail-

ureCallback = NULL)

Description: Send data using security. Packets are sent in AUTO_ROUTE mode with EXPLRER_FRAME

enabled for listening devices (ignored if not supported by the hardware [based on 5.0x branch]). Ex-

plicitelly use security

Parameter nodeId: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)

Parameter data: Paket payload

Parameter description: Packet description for queue inspector and logging

Parameter keyClass: Security class to use: 0 - S0, 1 - S2 Unauthenticated, 2 - S2 Authenticated, 4 - S2

Access

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

212

E Function Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.lastSend

Function Class GetNodeProtocolInfo

Syntax: GetNodeProtocolInfo(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Get node protocol info

Parameter nodeId: Node Id of the device in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.isListening, devices[node_id].data.isRouting, devices[node_id].data.optional,

devices[node_id].data.sensor1000, devices[node_id].data.sensor250, devices[node_id].data.infoProtocolSpecific

Function Class GetRoutingTableLine

Syntax: GetRoutingTableLine(nodeId, removeBad = FALSE, removeRepeaters = FALSE, successCallback =

NULL, failureCallback = NULL)

Description: Get routing table line

Parameter nodeId: Node Id of the device in question

Parameter removeBad: Exclude failed nodes from the listing

Parameter removeRepeaters: Exclude repeater nodes from the listing

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.neighbours

Function Class AssignReturnRoute

Syntax: AssignReturnRoute(nodeId, destId, successCallback = NULL, failureCallback = NULL)

Description: Assign return route to specified node. Get Serial API capabilities

Parameter nodeId: Node Id of the device that have to store new route

Parameter destId: Destination Node Id of the route

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class AssignSUCReturnRoute

Syntax: AssignSUCReturnRoute(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Assign return route to SUC

Parameter nodeId: Node Id of the device that have to store route to SUC

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class DeleteReturnRoute

Syntax: DeleteReturnRoute(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Delete return route

Parameter nodeId: Node Id of the device that have to delete all assigned return routes

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

213

E Function Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class DeleteSUCReturnRoute

Syntax: DeleteSUCReturnRoute(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Delete return route to SUC

Parameter nodeId: Node Id of the device that have to delete route to SUC

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SetDefault

Syntax: SetDefault(successCallback = NULL, failureCallback = NULL)

Description: Reset the controller. Note: this function will delete ALL data from the Z-Wave chip and

restore it to factory default !. Sticks based on 4.5x and 6.x SDKs will also generate a new Home Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: lastExcludedDevice, lastIncludedDevice

Function Class SendSUCNodeId

Syntax: SendSUCNodeId(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Send SUC Node Id. Informs portable and static controllers about new or deleted SUC/SIS

Parameter nodeId: Node Id of the device that have to be informed about new or deleted SIC/SIS

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SendNodeInformation

Syntax: SendNodeInformation(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Send NIF of the stick

Parameter nodeId: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class RequestNodeInformation

Syntax: RequestNodeInformation(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Request NIF of a device

Parameter nodeId: Node Id to be requested for a NIF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.nodeInfoFrame

214

E Function Class Reference

Function Class RemoveFailedNode

Syntax: RemoveFailedNode(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Remove failed node from network. Before removing SDK will check that the device is really

unreachable

Parameter nodeId: Node Id to be removed from network

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: lastExcludedDevice

Function Class ReplaceFailedNode

Syntax: ReplaceFailedNode(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Replace failed node with a new one. Be ware that a failed node can be replaced by a node of

another type. This can lead to probles!. Always request device NIF and force re-interview a�er successful

replace process

Parameter nodeId: Node Id to be replaced by new one

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: lastIncludedDevice, controllerState

Function Class RequestNetworkUpdate

Syntax: RequestNetworkUpdate(successCallback = NULL, failureCallback = NULL)

Description: Request network topology update from SUC/SIS. Note that this process may also fail due

more than 64 changes from last sync. In this case a re-inclusion of the controller (self) is required

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class RequestNodeNeighbourUpdate

Syntax: RequestNodeNeighbourUpdate(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Request neighbours update for specific node

Parameter nodeId: Node Id to be requested for it’s neighbours

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: devices[node_id].data.neighbours

Function Class SetLearnMode

Syntax: SetLearnMode(startStop, successCallback = NULL, failureCallback = NULL)

Description: Set/stop Learn mode. Tries first classical inclusion then falls back to NWI automatically. Use

zway_controller_set_learn_mode instead to get correctly set up the environment a�er inclusion

Parameter startStop: Start Learn mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

215

E Function Class Reference

Function Class AddNodeToNetwork

Syntax: AddNodeToNetwork(startStop, highPower = TRUE, successCallback = NULL, failureCallback =

NULL)

Description: Start/stop Inclusion of a new node. Available on primary and inclusion controllers

Parameter startStop: Start inclusion mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class RemoveNodeFromNetwork

Syntax: RemoveNodeFromNetwork(startStop, highPower = FALSE, successCallback = NULL, failureCall-

back = NULL)

Description: Start/stop exclusion of a node. Note that this function can be used to exclude a device from

previous network before including in ours. Available on primary and inclusion controllers

Parameter startStop: Start exclusion mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class RemoveNodeIdFromNetwork

Syntax: RemoveNodeIdFromNetwork(nodeId, startStop, highPower = FALSE, successCallback = NULL,

failureCallback = NULL)

Description: Start/stop exclusion of a node id. Note that this function can be used to exclude a device

from previous network before including in ours. Available on primary and inclusion controllers

Parameter nodeId: NodeId to exclude. If 0 or > 232, any node will be excluded (like with zway_fc_remove_node_from_network

/ RemoveNodeFromNetwork)

Parameter startStop: Start exclusion mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class ControllerChange

Syntax: ControllerChange(startStop, highPower = TRUE, successCallback = NULL, failureCallback = NULL)

Description: Set new primary controller (also known as Controller Shi�). Same as Inclusion, but the newly

included device will get the role of primary. Available only on primary controller

Parameter startStop: Start controller shi� mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

216

E Function Class Reference

Function Class CreateNewPrimary

Syntax: CreateNewPrimary(startStop, successCallback = NULL, failureCallback = NULL)

Description: Create new primary controller by SUC controller. Same as Inclusion, but the newly included

device will get the role of primary. Available only on SUC. Be careful not to create two primary controllers!

This can lead to network malfunction!

Parameter startStop: Start create new primary mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class ZMEFreqChange

Syntax: ZMEFreqChange(freq, successCallback = NULL, failureCallback = NULL)

Description: Change Z-Wave.Me Z-Stick 4 frequency. This function is specific for Z-Wave.Me hardware

Parameter freq: 0x01 RU. 0x02 IN. 0x03 US. 0x04 ANZ. 0x05 HK. 0x06 CN. 0x07 JP. 0x08 KR. 0x09 IL. 0x0A

MY. 0xFF request current frequency (ZME firmwares prior to 5.03 don’t support this feature)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: frequency

Function Class RFPowerLevelSet

Syntax: RFPowerLevelSet(level, successCallback = NULL, failureCallback = NULL)

Description: Set RF power level to specified value

Parameter level: 0 to 9

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class RFPowerLevelGet

Syntax: RFPowerLevelGet(successCallback = NULL, failureCallback = NULL)

Description: Get RF power level current value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SendTestFrame

Syntax: SendTestFrame(nodeId, level, successCallback = NULL, failureCallback = NULL)

Description: Send test frame to a node at a specified RF level

Parameter nodeId: Node Id to make test against

Parameter level: 0 to 9

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

217

E Function Class Reference

Function Class FlashAutoProgSet

Syntax: FlashAutoProgSet(successCallback = NULL, failureCallback = NULL)

Description: Put Z-Wave chip in Atuo Prog mode for USB/UART reflashing

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class ExploreRequestInclusion

Syntax: ExploreRequestInclusion(successCallback = NULL, failureCallback = NULL)

Description: Request NWI. Called from SetLearnMode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class ExploreRequestExclusion

Syntax: ExploreRequestExclusion(successCallback = NULL, failureCallback = NULL)

Description: Request NWE

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class ZMEBootloaderFlash

Syntax: ZMEBootloaderFlash(addr, successCallback = NULL, failureCallback = NULL)

Description: Start reflashing bootloader of Z-Wave.Me firmware for 5th generation Z-Wave chip. This

function is specific for Z-Wave.Me hardware

Parameter addr: address of new bootloader location in 2K sectors

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class ZMECapabilities

Syntax: ZMECapabilities(data = NULL, successCallback = NULL, failureCallback = NULL)

Description: Get or set firmware capabilities. This function is specific for Z-Wave.Me hardware

Parameter data: data to set (NULL to get)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: caps, uuid

Function Class ZMEPHISetLED

Syntax: ZMEPHISetLED(led, status, successCallback = NULL, failureCallback = NULL)

Description: Activate LEDs on Philio hw. This function is specific for Philio hardware

Parameter led: LED id: 0x10 (Logo), 0x11 (Around), 0x12 (Misc)

Parameter status: LED status 2 (O�), 4 (On), 8 (Flash), 16 (Slow flash), 32 (Slow dimming)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

218

E Function Class Reference

Function Class ZMEPHIGetBu�on

Syntax: ZMEPHIGetBu�on(bu�on, successCallback = NULL, failureCallback = NULL)

Description: Get bu�on state on Philio hw. This function is specific for Philio hardware

Parameter bu�on: 0: Tamper Key, 1: Function Key A, 2: Function Key B

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: philiohw.tamper, philiohw.funcA, philiohw.funcB

Function Class ZMEPHIGetPower

Syntax: ZMEPHIGetPower(successCallback = NULL, failureCallback = NULL)

Description: Get power state on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: philiohw.powerFail, philiohw.ba�eryLevel, philiohw.charging, philiohw.ba�eryFail

Function Class ZMEPHIGetBa�ery

Syntax: ZMEPHIGetBa�ery(successCallback = NULL, failureCallback = NULL)

Description: Get ba�ery state on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: philiohw.ba�eryADCLevel

Function Class ZMEPHIGetRTC

Syntax: ZMEPHIGetRTC(successCallback = NULL, failureCallback = NULL)

Description: Get RTC from Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Report: set system time

Function Class ZMEPHISetRTC

Syntax: ZMEPHISetRTC(successCallback = NULL, failureCallback = NULL)

Description: Set RTC on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class InjectPacket

Syntax: InjectPacket(nodeId, data, successCallback = NULL, failureCallback = NULL)

Description: Inject command in Z-Way as it was received via Z-Wave. This function is for debugging only

Parameter nodeId: Source Node Id

Parameter data: Paket payload (should looks like ccId, ccCmd, data,)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

219

E Function Class Reference

Function Class GetBackgroundRSSI

Syntax: GetBackgroundRSSI(successCallback = NULL, failureCallback = NULL)

Description: Get background noise level

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SerialAPISetup

Syntax: SerialAPISetup(function, enable, successCallback = NULL, failureCallback = NULL)

Description: Configure Z-Wave Serial API

Parameter function: Configure specific Serial API function. Currently only enable/disable IMA is sup-

ported (function = 0x02)

Parameter enable: Set feature state: True to enable, False to disable

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class ClearNetworkStats

Syntax: ClearNetworkStats(successCallback = NULL, failureCallback = NULL)

Description: Clear statistics gathered by the Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class GetNetworkStats

Syntax: GetNetworkStats(successCallback = NULL, failureCallback = NULL)

Description: Get statistics gathered by the Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class GetPriorityRoute

Syntax: GetPriorityRoute(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Get the route with the highest priority

Parameter nodeId: Node ID we are interested in

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SetPriorityRoute

Syntax: SetPriorityRoute(nodeId, repeater1, repeater2, repeater3, repeater4, routeSpeed, successCallback

= NULL, failureCallback = NULL)

Description: Set the route with the highest priority

Parameter nodeId: Node ID we are interested in

Parameter repeater1: Hop #1 in the route. Value 0 means direct range. Values > 232 clears the priority

route and LWR (Last Working Route is selected by the protocol)

Parameter repeater2: Hop #2 in the route. Value 0 means end of route

Parameter repeater3: Hop #3 in the route. Value 0 means end of route

220

E Function Class Reference

Parameter repeater4: Hop #4 in the route. Value 0 means end of route

Parameter routeSpeed: Baudrate to use: 1 for 9.6 kbps, 2 for 40 kbps, 3 for 100 kbps. Value 0 means end

of route

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

Function Class SetPromiscuousMode

Syntax: SetPromiscuousMode(enable, successCallback = NULL, failureCallback = NULL)

Description: Enable or disable promiscuous mode

Parameter enable: True to enable functionality, False to disable

Parameter successCallback: Custom function to be called on function success. NULL if callback is not

needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not

needed

221

F List of supported EnOcean devices

F.1 NodOn

• Wall Switch CWS-2-1-xx

• So� Remote CRC-2-6-xx

• Card Switch CCS-2-1-01

• Door Window Sensor SDO-2-1-xx

• Temperature Sensor STP-2-1-xx

F.2 Thermokon

• Door Sensor SRW01

• Motion Detector SR-MOC

• Motion Detector SW-MOW

• Card Reader SR-KCS

• Wall Controller 55x55

F.3 Hubbel

• Motion Sensor wiSTAR OS

• Card Reader wiSATR Key Card

• Single Rocker Wall Controller wiStar

• Dual Rocker Wall Controller wiStar

F.4 AWAG

• Door Window Sensor FK101

• Card Reader KSM-CH

• Wall Controller WS-CH-102

F.5 Hoppe

• Door Sensor STM250

F.6 Schneider Elektrik

• Temperature Sensor SED-WDS

• Motion Detector SED-CMS

• Card Reader SED-KCS

• Wall Controller AED-1RS

F.7 PEHA

• Door Sensor FU FK

• Motion Detector FUB-BM

• Motion Detector FUB-BM DE

• Card Reader FU-BLS

• Wall Controller FU BLSN

• Wall Controller FU BLSJR

• Wall Controller FU BLSN-2

222

F List of supported EnOcean devices

• Wall Controller FU BLSN

F.8 Eltako

• Wall Controller FT4-rw

• Motion detector FABH65

• Door Sensor FTKB-rw

F.9 EnOcean GmbH

• Door Sensor STM250

• Motion Detector EOSC

• Motion Detector EOSW

• Card Reader EKCS

• Single Rocker Wall Controller PTM210

• Dual Rocker Wall Controller PTM215

223

List of Tables

3.1 Comparison of Access methods . 19

8.1 Troubleshooting on Z-Wave networks . 100

11.1 Di�erent APIs of the Z-Way
™

system . 122

11.2 Parameters of the Job �eue Vizualization . 131

12.1 vDev device types with metrics and commands . 148

13.1 Module.json details . 155

13.2 Details of index.js . 157

224

List of Figures

1.1 Z-Wave Essentials . 9

2.1 RazBerry on top of a Raspberry Pi . 11

2.2 Components on RaZberry Hardware . 11

2.3 Frequency Change Option in Z-Wave Expert User Interface . 12

2.4 USB Stick UZB . 13

2.5 UZB license upgrade . 14

3.1 Folder Content of Z-Way
™

. 16

3.2 Z-Wave Network Access App . 17

3.3 Z-Way
™

Windows Setup Wizard . 17

3.4 Z-Way
™

Windows Installation . 18

3.5 Windows Hardware manager with new COM port . 18

3.6 Z-Wave Network Access App with COM Port . 18

3.7 Z-Wave as Windows service . 19

3.8 Initial setup of the Z-Way
™

User Interface . 20

3.9 Login on local IP address . 21

3.10 Remote Login Screen . 21

4.1 Z-Way Smart Home Interface . 24

4.2 Elements . 24

4.3 Elements configuration - upper part . 25

4.4 Elements configuration - lower part . 26

4.5 Room overview . 26

4.6 Room View . 27

4.7 Room configuration dialog . 28

4.8 Timeline . 28

4.9 News Indicator . 28

4.10 Configuration menu . 29

4.11 Local Apps . 30

4.12 Online Apps . 30

4.13 App Setup . 31

4.14 Active App Management . 32

4.15 Device Management Overview . 32

4.16 Scan QR Code for Smart Start . 32

4.17 Z-Wave Device Vendor Overview . 33

4.18 Z-Wave Device Inclusion Dialog . 34

4.19 Z-Wave Device Exclusion Dialog . 34

4.20 Z-Wave Device Successful Inclusion . 35

4.21 Z-Wave Device Authentication . 35

4.22 Z-Wave Device manual configuration . 36

4.23 Z-Wave device inclusion failed . 37

4.24 Z-Wave device inclusion repeated . 37

4.25 Z-Wave device overview . 38

4.26 Z-Wave device ba�ery overview . 38

4.27 Z-Wave device network status . 38

4.28 Z-Wave Device Reset /Exclusion . 39

4.29 Local Skins . 39

4.30 Skins on Server . 39

4.31 Local Icons . 40

4.32 Icon-Sets on Server . 41

4.33 My Se�ings Dialog - upper part . 41

4.34 My Se�ings Dialog - lower part . 42

4.35 List of Z-Way
™

news . 42

225

List of Figures

4.36 Administrator Management Menu . 43

4.37 User Management . 43

4.38 Remote Access Management . 44

4.39 Time Zone Management . 44

4.40 Automated Backup into Cloud . 45

4.41 Local Back and Restore . 45

4.42 Firmware Update Options . 46

4.43 Firmware Update Dialog . 47

4.44 App Store Access . 48

4.45 Problem Reporting Form . 48

5.1 Web User Interface on small mobile screen . 50

5.2 Mobile App Icon from App Store . 50

5.3 Native HTML based app . 51

5.4 Native fast app for Android . 51

5.5 Imperihome App . 52

5.6 Z-Way
™

app to support Fibaro Mobile App . 52

5.7 Fibaro Mobile App . 53

6.1 The Open Weather app in the App Repository . 55

6.2 The Open Weather app configuration . 56

6.3 The Scene App . 56

6.4 The Scene Element . 57

6.5 Schedule - an scheduled Scene . 57

6.6 If->Then App . 57

6.7 If->Then App Configuration Dialog . 58

6.8 Association App . 59

6.9 Logical Rule . 59

6.10 Logical Rule . 60

6.11 Dummy Device . 60

6.12 Leakage Protection App . 60

6.13 Leakage Protection element - armed . 61

6.14 Leakage Protection element- alarm . 61

6.15 Leakage Protection element- wait for clear . 61

6.16 Leakage Protection App . 62

6.17 Fire Protection element - armed . 62

6.18 Security System . 62

6.19 Security System im disarm status . 63

6.20 Security System im arm status . 63

6.21 Security System in alarm status . 63

6.22 Climate Control App . 64

6.23 Climate Control App Element . 64

6.24 Climate Control App Element - room view . 65

6.25 Email App . 65

6.26 Apple Homekit Integration . 66

6.27 Intchart.com Integration . 66

6.28 Astronomy App . 67

6.29 Amazon Alex Integration . 68

6.30 Philips Hue Integration . 68

6.31 HTTP device . 68

6.32 HTTP device - Configuration dialog for currency exchange “sensor” . 69

6.33 Currency Exchange Element . 69

7.1 Sceenshot of the Expert User Interface Home Screen . 71

7.2 Control Interface for Switches, Dimmers and Motor Controls . 71

7.3 Control Interface for Sensors . 72

7.4 Control Interface for Meters . 72

7.5 Control Interface for Thermostats . 73

7.6 Control Interface for Locks . 73

7.7 Control Interface for Notification Devices . 74

7.8 Device status overview . 74

226

List of Figures

7.9 Device information overview . 75

7.10 Ba�ery status overview . 76

7.11 Active association overview . 76

7.12 Device interview . 77

7.13 Configuration - convenient view . 78

7.14 Configuration - generic view . 79

7.15 Association dialog . 79

7.16 Link health . 80

7.17 Experts commands . 81

7.18 Network Management . 82

7.19 Z-Wave Expert User Interface - S2 key selection . 83

7.20 Z-Wave Expert User Interface - S2 key display . 83

7.21 Expert User Interface - S2 authentication . 84

7.22 Smart Start - enter Device Key (DSK) . 84

7.23 Smart Start - scan QR code (on smart phones only . 84

7.24 Smart Start Provisioning list . 85

7.25 Z-Way
™

- own key for authentication . 85

7.26 Neighbors . 86

7.27 Reorganization . 87

7.28 Poltorak-Chart . 88

7.29 Timing Info . 88

7.30 Link Status . 89

7.31 Controller Info . 90

7.32 Job �eue . 91

8.1 Background Noise . 93

8.2 Realtime Measurement of Background-Noise . 93

8.3 Powerbank to power the Z-Way
™

controller for mobile use . 94

8.4 Network Statistics Display . 94

8.5 Status Page Z-Way
™

. 95

8.6 Packet Sni�er . 95

8.7 Paket timing of a fresh Z-Wave network . 96

8.8 Paket timing of an aged Z-Wave network . 97

8.9 Neighbor-Table of a controller . 97

8.10 Link test of a node . 98

8.11 Association Dialog in Z-Wave Expert User Interface . 99

9.1 Inclusion of predefined cameras . 102

9.2 Generic camera module . 102

9.3 More camera support in App Store . 102

9.4 Web browser debug interface . 103

9.5 Popp 433 MHz Gateway . 104

9.6 RF433 App Setup . 105

9.7 433 MHz gateway web interface . 105

9.8 433 MHz gateway setup dialog . 106

9.9 433 MHz option in ’Devices’ . 107

9.10 433 MHz teach in . 108

9.11 433 MHz teach in of a binary sensor . 108

9.12 433 MHz device management . 108

9.13 Popp EnOcean USB Stick . 109

9.14 EnOcean App configuration . 109

9.15 EnOcean Teach In . 110

9.16 EnOcean Device Configuration a�er Teach-In . 110

9.17 EnOcean Device Elements . 111

9.18 EnOcean Device Management . 111

10.1 Skin Setup . 112

10.2 Skin directory structue . 113

10.3 Go to menu Skin . 115

10.4 Upload new Skin . 115

10.5 Select the packed Skin . 116

227

List of Figures

10.6 Select the Icon pack . 117

10.7 Manage an Icon pack . 117

11.1 Z-Way
™

APIs and their use by GUI demos . 120

11.2 Z-Way
™

Object Tree Structure . 124

11.3 Z-Way
™

Timings . 125

11.4 Z-Way
™

Function Classes . 126

11.5 Z-Way
™

Expert Command Class Commands . 127

11.6 Command Class Inerview overview . 128

11.7 Command Class Variables in Z-Wave Expert User Interface . 129

11.8 Terminal running z-way-test . 137

228

Index

Android App, 48

Apps, 23, 29

Association, 77

Associations, 74

Backup & Restore, 43

BackupandRestore, 83

Ba�ery, 74

CE, 12

Configuration, 76

Device Types, 74

Devices, 32

Elements, 23

Elements Configuration, 23

Events, 23

Exclusion, 32, 80

Expert User Interface, 69

FCC, 13

Fibaro, 51

File Descriptions, 128

Files, 128

Firmware Update, 45, 79

Folder, 128

Folder Structure, 128

Frequency, 12, 84

Hardware, 10

Imperihome, 48

Inclusion, 32, 80

Installation, 16

Integration, 52

Interview, 76

IOS App, 48

JavaScript Engine, 136

Link Health, 79, 85

Mobile, 48

Mobile Apps, 48

My Se�ings, 39

News Feed, 29

PHP Script, 52

Privacy, 20

Raspberry Pi, 10

RaZberry, 10, 16

Remote Access, 17, 42

Reset, 45

Rooms, 26

Security, 20

shui, 23

Time Zone, 43

USB Stick, 13

UZB, 13, 16

vDev, 145

Virtual Device, 145

Windows, 17

Z-Wave Basics, 8

Z-Wave Literature, 8

229

	Introduction
	Structure of the book
	History of Z-Way
	Status of the document

	Z-Way™ enabled Hardware
	RaZberry shield board for Raspberry Pi
	Compatibility
	Pinout and options on board
	Boot-Up Self-Test
	LEDs during Operation
	Frequencies
	Certifications

	The USB Stick UZB
	Boot-Up Self-Test
	Frequencies
	Certifications

	Other hardware platforms

	Preparation and Ways to Access the System
	Installation on Raspberry Pi
	Installation on other platforms using UZB
	Unix-based Platforms
	Windows

	Local and Remote Access
	Security and Privacy

	The Web Browser User Interface
	Z-Way Smart Home InterfaceDaily Usage
	Standard Element View
	News feed

	The Configuration Menu
	Apps
	Devices
	Customize
	My Settings
	Management

	The Management Interface
	User Management
	Remote Access Management
	Time Zone
	Backup & Restore
	Factory default
	Firmware Update
	App Store Access
	Report Problem
	Info

	Mobile Apps
	Standard mobile web browsers
	Native HTML based apps
	Pure Native Apps
	Third-Party Apps
	Imperihome
	Fibaro
	openHAB

	Shortcuts for Android and Integration into Third party software

	The App System: making it intelligent
	A simple Apps as starter - 'Local Weather'
	Smart Home Logic
	Scene
	If -> Then
	Logical Rule: If->Then on steroids
	Tips and Tricks

	The big apps
	Leakage Protection
	Fire Protection
	Burglar Alarm System
	Climate Control

	Out-of-band notifications
	Push Notifications
	Email ME
	Other notifiers

	Useful tools and utilities
	Apple HomeKit
	Intchart.com
	Astronomy App
	Alexa Integration
	Philips Hue Integration

	For Developers

	The Z-Wave Expert User Interface
	Home Screen
	Control
	Switch
	Sensors
	Meters
	Thermostats
	Locks
	Notifications

	Device
	Status
	Type Info
	Battery
	Active Associations

	Configuration
	Interview
	Configuration
	Association
	Link Health
	Expert Commands
	Firmware Update

	Network
	Control
	Neighbors
	Reorganization
	Network Map
	Timing Info
	Link Status
	Controller Info

	Analytics
	Setup
	Job Queue

	Troubleshoot the Z-Wave Network
	Radio Layer
	Network Layer - Devices
	Network Layer - Weak or Wrong Routes
	Application Layer Settings
	Polling
	Dead Associations
	Wrong Wakeup Settings

	Summary

	Extending the systems beyond Z-Wave
	IP-Cameras
	How to find out if a camera is supported by Z-Way™ ?
	How to prepare for integration?
	How to find the IP address of the camera?
	How to integrate the camera into Z-Way™ ?
	How to support a camera not on the list yet?

	433 MHz devices
	Introduction
	433 MHz Gateway
	How to setup the 433 MHz Gateway

	EnOcean devices
	Other IP/Internet-based services

	Customize your system
	Skins
	Step 1 - Do you own Skin
	Step 2 - Do your own Images
	Step 3 - Test the new Skin
	Step 4 - Change colors, fonts, shapes – almost
	Step 5 - Going into the SASS world
	Step 6 - Changing SASS
	Step 7 - Create the final Skin for friends, family and the public
	Step 8 - Distribute your Skin
	Step 9 - Rewind in case something goes wrong

	Icon Sets
	Create Your own Icons
	Create an Icon Pack
	Upload your Icon Set

	How to translate the Z-Way™ to your language
	Smart-Home User Interface
	Expert User Interface
	Backend Code
	Submission of your Language Pack

	Develop Code for Z-Way™
	Z-Way™ software structure overview
	Z-Way™ APIs Quick Reference
	Z-Wave Device API
	JavaScript API (JS API)
	Virtual Device API
	Comparison

	The Z-Wave Device (JSON) API in detail
	The data model
	Timing behavior of Z-Wave data
	Executing Commands

	C-Library API and a general view on the Z-Way™ file structure
	Files in the /zway folder
	The use of the C-Library

	The JavaScript Engine
	The JavaScript Core Interpreter and the integration of the Z-Wave function
	Z-Way™ extensions to the JavaScript Core
	HTTP Access
	XML parser
	Cryptographic functions
	Sockets functions
	WebSockets functions
	Other JavaScript Extensions
	Debugging JavaScript code

	The virtual device concept (vDev)
	Names and Ids
	Device Type
	Access to Virtual Devices
	Virtual Device Usage / Commands
	Virtual Device Usage / Values
	How to create your own virtual devices
	Binding to metric changes

	The event bus
	Emitting events
	Catching (binding to) events
	Notification and Severity

	Modules (for users called 'Apps')
	Module.json
	index.js
	Available Core Modules

	Special topics for Developers
	Authentication
	How to write own Apps for Z-Way™
	module.js
	Schema
	The file index.js

	Write you own Device Description Files
	Extending EnOcean

	CE Declarations
	User Interface Fundamentals - Slides
	Z-Way™ Data Model Reference
	Data
	JS object zway
	controller
	Devices
	Device
	Instances
	CommandClass

	Command Class Reference
	Command Class Basic (0x20/32)
	Command Class Wakeup (0x84/132)
	Command Class NoOperation (0x00/0)
	Command Class Battery (0x80/128)
	Command Class ManufacturerSpecific (0x72/114)
	Command Class Proprietary (0x88/136)
	Command Class Configuration (0x70/112)
	Command Class SensorBinary (0x30/48)
	Command Class Association (0x85/133)
	Command Class Meter (0x32/50)
	Command Class Meter Pulse (0x35/53)
	Command Class SensorMultilevel (0x31/49)
	Command Class Sensor Configuration (0x9E/158)
	Command Class SwitchAll (0x27/39)
	Command Class SwitchBinary (0x25/37)
	Command Class SwitchMultilevel (0x26/38)
	Command Class MultiChannelAssociation (0x8E/142)
	Command Class MultiChannel (0x60/96)
	Command Class Node Naming (0x77/119)
	Command Class Thermostat SetPoint (0x43/67)
	Command Class Thermostat Mode (0x40/64)
	Command Class Thermostat Fan Mode (0x44/68)
	Command Class Thermostat Fan State (0x45/69)
	Command Class Thermostat Operating State (0x42/66)
	Command Class Alarm Sensor (0x9C/156)
	Command Class Door Lock (0x62/98)
	Command Class Door Lock Logging (0x4C/76)
	Command Class User Code (0x63/99)
	Command Class Time (0x8A/138)
	Command Class Time Parameters (0x8B/139)
	Command Class Clock (0x81/129)
	Command Class Scene Activation (0x2B/43)
	Command Class Scene Controller Conf (0x2D/45)
	Command Class Scene Actuator Conf (0x2C/44)
	Command Class Indicator (0x87/135)
	Command Class Protection (0x75/117)
	Command Class Schedule Entry Lock (0x4E/78)
	Command Class Climate Control Schedule (0x46/70)
	Command Class MeterTableMonitor (0x3D/61)
	Command Class Alarm (0x71/113)
	Command Class PowerLevel (0x73/115)
	Command Class Z-Wave Plus Info (0x5E/94)
	Command Class Firmware Update (0x7A/122)
	Command Class Association Group Information (0x59/89)
	Command Class SwitchColor (0x33/51)
	Command Class BarrierOperator (0x66/102)
	Command Class SimpleAVControl (0x94/148)
	Command Class Security (0x98/152)
	Command Class CRC16 (0x56/86)
	Command Class MultiCmd (0x8F/143)
	Command Class Supervision (0x6C/108)
	Command Class Application Status (0x22/34)
	Command Class Version (0x86/134)
	Command Class DeviceResetLocally (0x5A/90)
	Command Class Central Scene (0x5B/91)

	Function Class Reference
	List of supported EnOcean devices
	NodOn
	Thermokon
	Hubbel
	AWAG
	Hoppe
	Schneider Elektrik
	PEHA
	Eltako
	EnOcean GmbH

