Z-Way Essentials

The Z-Wave.Me Team

October 27, 2017

© 2017 Prof.- Ing. Christian Paetz, 08064 Zwickau

1. Edition 2017

ISBN: XXX-XXXXXXXX

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and

certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below.
The Z-Wave.Me Team, info@z-wave.me

Contents

(I__Introduction|

[L2 Historyof Z-Way|

|2 Z-Way " enabled Hardware|

[2.1 RaZberry shield board for Raspberry Pi
2.1.1 Compatibility] e
2.1.2 Pinoutand optionson board|.

213 Boot-UpSelf-Test]

2.1.4 LEDs during Operation|. e

2.1.5 Frequencies|
21,6 CertifiCations] . . - - « « « v o e e e

[2.2.1 Boot-Up Self-Test|

222 Frequencies|
223 Cerfificationsl . . - -« o v o e e e

[2.3 Other hardware platforms|

[3_Preparation and Ways to Access the System|
(-1 TInstallation on Raspberry Pil
[3.2 Tnstallation on other platforms using UZB| o i it e

4__The Web Browser User Interfacel
4.1 Z-WAY SMART HOME INTERFACEDaily Usage|

411 Standard Element VIEW] o o v ovv e

[4.2 The Configuration Menu|
4.2.1 Apps

[4.2.4 MySettings|

[275 ANAZEMENT] i e e e

E.3 TEe Management Interiace| ...

4.3.1 ser Management| L L e
[4.3.2 Remote Access Management|. o oL

[43.4 Backup & Restore|.

[435 Factorydefaull]

[£3%6 TFirmware Update] oo

4.3.7 App Store ACCess| e e e e

438 Report Problem|

[> Mobile Apps|

[5.2 Native HTML based apps|

5.3 ure Native S

5.4 Third-Party APpPS| o o o o e e e e

[5.417 Tmperthome|

10
10
10
10
11
12
12
12
13
14
14
15
15

16
16
16
16
17
17
20

23
23
23
27
29
29
31
38
40
40
43
43
43
44
44
46
46
47
47
47

Contents

D 1.) 52

5.4.3 openHAB| 52

[5.5 Shortcuts for Android and Integration into Third party software| 53
[6 The App System: making it intelligen 55
[e-1 A'simple Apps as starter - "LOCAL WEATHER'| oiiiiii . 55
[:2 Smart HomeTogic]. 56
621 Scemel.o 56

622 If->Thenl o 57

6.2.3 Logical Rule: If->Then on steroids| 59

6.24 Tipsand Tricks| o L 59

6.3 Thebigapps| 60
[6.3.1 Leakage Protection| 60
632 Tire Protection] v o v it 61

6.3.3 Burglar AlarmSystem| Lo 63
634 Climate Controll. o ot it e 64

6.4 Out-of-bandmotifications 65
6.41 Push Notifications| 65
6.42 Email MEl o e 65
6.43 Othernotifiersl 66

6.5 Useful tools and wtilities| 66
6.5.1 Apple HomeKit] L 66
652 InfcharbComl. . . . o o oo 67

[6.5.3 Astronomy App|. 67
654 Alexalnfegration] 67

6.5.5 Philips Hue Infegration] oo v i it it e e e 67

6.6 For Developers|. 68
[7 The Z-Wave Expert User Interface| 70
[Z1 Home Screen|. e 70
Z2Controll oot 70
F21 SWitchl oo 70
227 SenSOIS . - o o oo 72
23 MEErsl . . . o o oot e e 72
724 Thermostatsl. 73
F25 Tocksl . o o oot 73
[Z2.6 Notificationsl 73
F3Device . . . oot 73
235 S 7 73

732 Typelnfo| e 75

7.3.3 Battery|. e 75
[73.4 Active ASSOCIAtIONS|o 75

[74 Configuration] 77
AT T0EEIVIEW] .« -« o o o o et e 77

[74.2 Configuration| 77
743 Association| L e 78
Z44 TLinkHealthl 80

[7.45 Expert Commands| 80

[746 Firmware Update]o oo 80

7.5 Networkl e e 81
51 _Controll . . .« .ottt 81

[7.5.2 Neighbors| 86

7.5.3 eorganization| e 86

[754 NetworkMap| 87
[755 TimingInfo| 87
256 LinkStatus00 89
757 ControllerInfol 89

7.6 Analytics| 91
7.7 CLUD| . . . L e e e e e 91
.. 91

Contents

8 Troubleshoot the Z-Wave Networkl 92
[8.1 RadioLayer| 92
[z Network Layer -Devices|ot ittt 92
8.3 Network Layer - Weak or Wrong Routes| 96
B2 Application Layer SSTES - - -« -« « o o oo 98

8.4.1 Polling|. e 98

8.4.2 Dead AsSOCIAtIONS] e e 98

[8.43 Wrong Wakeup Settings| 98

B5 Summary]. 99
[9 Extending the systems beyond Z-Wave| 101
.. 101

[9.1.1 How to find out if a camera is supported by Z-Way ™ 2| 101
B12 How fo prepare for IEEration?] . - - - -« « « o oo 101
9.1.3 How to find the IP address of the camera? 101

9.1.4 How to integrate the camera into Z-Waym—?| 101

9.1.5 How to support a camera noton thelistyet? 103

02 433 MHzdevices|. 103
9.21 Introductionl. 103

9.2.2 433 MHz Gateway| e 104

9.2.3 How to setup the 433 MHz Gateway| i 104

1CES| . . . 109

9.4 Other IP/Internet-based services| L 111

[10 Customize your system| 112

0.1 SKinsl o e e e e 112
[10.1.1 Step1-DoyouownSkin| 112
10.1.2 Step2-DoyourownlImages| o 112
10.1.3 Step3-Testthenew Skin| 113
10.1.4 Step 4 - Change colors, fonts, shapes —almost{ 113
10.1.5 Step 5 - Going into the SASSworld) oo oo 114
1006 Step 6 CRANGING SASY - - - -« o o oo e e e e e e 114
10.1.7 Step 7 - Create the final Skin for friends, family and the publid. 114
10.1.8 Step 8 - Distribufe yOUr SKIN|. v v ot i e e e e e e e 115
10.1.9 Step 9 - Rewind in case something goeswrong| L. 115

02 TcomSetsl o ot 116
[10.2.1 Create Yourown lcons| o o o 116
[[022 CreateanIconPackl 116
110.2.3 Upload yourIconSet| 117

[10.3 How to translate the Z-Way ' to your language| 117
10.3.1 Smart-Home User Interface| 117
10.3.2 Expert User Interface|. 118
1033 Backend Codel. oot 118
[10.3.4 Submission of your Language Pack| o o o o o 118

[11 Develop Code for Z-Way " | 119
11.1 Z-Way ' software structure OVerview| oo ottt 119
11.2 Z-Way = APIs Quick Reference|. 120

1121 Z-Wave Device API| 120
11.2.2 JavaScript APL(JSAPI)|. 121
1123 Virtual Device APT oot oot e e e e 121
[I1.24 COmPATISON| vt v vttt e e e 122

|11.3 The Z-Wave Device (JSON) APlindetail] 123
1131 Thedatamodell 123
11.3.2 Timing behavior of Z-Wavedatal o 123
11.3.3 Executing Commands| L L 125

[11.4 C-Library APIand a general view on the Z-Way' file structure| 130
[11.4.1 Filesinthe /zwayfolder| 130
[[T42 Theuse of the C-LIBrary]« o v v v v it e e e e 135

Contents

[12_The JavaScript Engine|
12.1 The JavaScript Core Interpreter and the integration of the Z-Wave function].
12.2 Z-Way ' extensions to the JavaScript Core|

12.2.2 XML parser| e
12.2.3 Cryptographic functions| e

[12.2.6 Other JavaScript Extensions|
[12:2.7 Debugging JavaScript code]
[12.3" The virtual device concept (VDev)|
[12.3.1 Namesand Ids| e
12.3.2 Device Type|.o
1233 Access to VIrtUAI DEVICES] . « « « v v v v v vt e e
[12.3.4 Virtual Device Usage / Commands|
1235 Virtual Device Usage / Values| oo v v v it e e e e e e

12.3.6 How to create your own virtual devices|o o L.
12.3.7 Binding to metric changes| L

12.4.1 Emittingevents|
12.4.2 Catching (binding to) events|.
12.4.3 Notification and Severity|.
[12.5 Modules (for users called "Apps’)|.
12.5.1 Modulejsonl
12.5.2 Index.js|
12.5.3 Available Core Modules|

[13 Special topics for Developers|
M3 Authenficalionl o v v oot
[13.2 How to write own Apps for Z-Way' |
[13.21 modulejs|
(322 Schemal oo
[13.23 Thefileindex.js|.

[13.3~ Write you own Device Description Files|. oo e
[13.4 Extending EnOcean] ot i i e

[A_CE Declarationsl

[B__User Interface Fundamentals - Slides|

|C_Z-Way™ Data Model Reference|
..
C.2 JSobjectzway| e

[D.1 Command Class Basic (0x20/32)]
|l _3.2 Command Class Wakeup (0X84/132)] o v v v vt e e e e e

[D.3 Command Class NoOperation (0x00/0)] ovvvv ittt e e
[D.4 Command Class Battery (0x80/128)]
[D.5 Command Class ManufacturerSpecific (0x72/114)]
[D.6 Command Class Proprietary (0x88/136)] o oo vt i ittt
D.7 Command Class Configuration (0x70/112)[.t
|l '2.8 Command Class SensorBinary (0x30/48)]
....................................
D.10 Command Class Meter (0x32/50)] o o o i i it e e e e e e e
[D.11 Command Class Meter Pulse (0x35/53)] . . - . . v v v v oot e e e e e e e

138
138
139
139
140
142
143
144
145
146
147
147
147
147
148
148
148
150
150
150
150
150
151
151
151
152

154
154
155
155
155
156
156
157

159

161

163
163
163
163
164
164
165
166

Contents

[D.12_Command Class SensorMultilevel (0x31/49)|. 174
5.13 Command Class Sensor Configuration (GIE/TSE] - . . « + « « o o e oo e 175
[D.14 Command Class SwitchAIL (0x27/39)]. . « .« « v v v ottt e e e 175
.15 Command Class SwitchBinary (0x25/37)] 176
[D.16 Command Class SwitchMultilevel (0x26/38)|. o o i i e e 177
[D.17 Command Class MultiChannelAssociation (0X8E/T42)] v vt v v i it 178
D.18 Command Class MUECRAnnel OK60/06) - - - - - « + « « « + + o o oo oo 179
[D.19 Command Class Node Naming (0x77/T19)].« o o oo vt it e e e e e e 180
[D.20_Command Class Thermostat SetPoint (0X43/67)] . . .« « v o v v vt i et e e e 182
D.21 Command Class Thermostat Mode (0x40/64)] v ot vttt 182
|l).22_Command Class Thermostat Fan Mode (0x44/68)|. 183
D.23 Command Class Thermostat Fan State (0x45/69)] i i 183
[D.24 Command Class Thermostat Operating State (0x42/66)] 184
[D.25 Command Class Alarm Sensor (0X9C/I56)] ¢ v v v v v it e et 184
[D.26 Command Class Door Lock (0X62/98)] v vt v et 185
@.27 Command Class Door Lock Logging (0x4C/76)|« .« o v v v it e e e e e 186
|l '2.28 Command Class User Code (0x63/99)[. 187
....................................... 188
[D.30_Command Class Time Parameters (0X8B/I39)] ¢ v v vt i et et 189
[D.31 Command Class Clock (0X81/129)] . . .+« v v v vt vt e e e e e e 189
@.32 Command Class Scene Activation (0x2B/43)] 190
[D.33 Command Class Scene Controller Conf (0x2D/45)] o o v vt vt i e e et 190
[D.34_ Command Class Scene Actuator Conf (0x2C/44)] o oot ittt 191
..................................... 191
[D.36_Command Class Protection (0X75/117)|. « « « « « v v v vt v e e e et e e e 192
[D.37 Command Class Schedule Entry Lock (0x4E/78)]t 193
[D.38_Command Class Climate Control Schedule (0x46/70)].o 195
|l '2.39 Command Class MeterTableMonitor (0x3D/61) oo 196
D.40 Command Class Alarm (0X71/T13) o o oot e e e e e e 197
[D.41 Command Class PowerLevel (0X73/115)] . -« « « v v v vt v e i e e e e e e e 198
D.42 Command Class Z-Wave Plus Info (0X5E/94)] ¢ vt i it e 199
[D.43 Command Class Firmware Update (0X7A/122)]t 200
[D.44 Command Class Association Group Information (0x59/89)] 201
[D.45_Command Class SwitchColor (0x33/51)] v vttt e e e 202
[5.26 Command Class BarrierOperator (0x66/102)] - « + + « o o oo oo oo 203
[D.47 Command Class SimpleAVControl (0x94/148)|. 204
[D.48 Command Class Security (0x98/152)]ot i it 204
|l .49 Command Class CRC16 (0X56/86)ot 205
..................................... 205
[D.51 Command Class Supervision (0x6C/108)|o v ittt 205
@.52 Command Class Application Status (0x22/34)[. 205
[D.53 Command Class Version (0X86/134)] v vt i it 206
@.54 Command Class DeviceResetLocally (0x5A/90)| 206
[D.55 Command Class Central Scene (0x5B/91) e 206
EE s Cl Ref.] 207
[F__List of supported EnOcean devices 222
F1 NodOnl e 222
[E2 __Thermokon|. e e 222
E3 " Hubbell 222
.. 222
F5 Hoppel 222
F6_Schneider EIEKEIAKl o o oo oot e e e 222
FEZ_PEOAL. o e e 222
E8 Eltakol. o o 223
[E9 _EnOcean GmbHI e e e 223

1 Introduction

1.1 Structure of the book

This book describes all aspects of the Z-Way " controller software solution. This include both the Z-Way " software
solution and the hardware Z-Way " runs on. The book is structured as follows:

Start)) Use) Extend) Manage) Customize) Contribute

The start section provides the necessary information to fire up a Z-Way ' -based controller. This is followed by the
explanation of the daily user interface — called Z-Way SMART HOME INTERFACE— both for standard web browser and
as native app for mobile devices. The next section cover the options to extend the system by supporting more radio
technologies, third-party solutions, and other applications.

The next chapter explains tools and processes to manage and troubleshoot Z-Wave networks, followed by explanations
of how to customize the user interface to your specific needs.

The final section of the book is dedicated to developers and programmers who can, and are willing to, contribute to
the project and/or design their own solutions based on Z-Way " .

The need for technical understanding and knowledge increases from chapter to chapter.

Please note that this book will not provide any basic knowledge about the Z-Wave technology as such. Please refer
to the book "Z-Wave Essentials’ as shown in figure[1.1|for an comprehensive explanation of the Z-Wave technology.
The book is available at amazon.com and many other book sellers. The ISBN number is 978-1545394640.

1.2 History of Z-Way

The history of Z-Way " dates back into the year of 2008. Two developers had done their own private Z-Wave controller

written in Python. When they got engaged they realized that they should combine their solutions and create a second

generation Z-Wave controller. The work on this merger started in May 2009 and the result - a complete Z-Wave

controller written in python was certified by the Z-Wave Alliance in March 2011.
http://products.z-wavealliance.org/products/85

To allow porting of this code to small memory platforms the whole software was rewritten in C and Javascript was

used as scripting engine. The same time the code was updated according the new Z-Wave Plus certification process

and finally certified as first Z-Wave Plus compatible controller in Fall of 2014.
http://products.z-wavealliance.org/products/1150

After many improvements the year of 2017 brought the next major change. As first software again Z-Way'" in Version

3.0 supports the new innovative security architecture of Z-Wave called S2.

1.3 Status of the document

The manual is based on Z-Way " software release >= 2.3.6. Some functions marked in blue text text require Z-Way "
v3.0.0 rc9 and up.

http://products.z-wavealliance.org/products/85
http://products.z-wavealliance.org/products/1150

1 Introduction

Interoperability
in Smart Homes

3" Edition

Figure 1.1: Z-Wave Essentials

2 Z-Way' enabled Hardware

Z-Way'" is a complete software solution that is ported on various hardware. In order to run it on a certain hardware
platform, the following requirements have to be met:
1. There must be a binary Z-Way" distribution available for this platform. At

http://razberry.wave.me/z-way—-server

you will find the most recent releases of Z-Way"" binary distributions for the various platforms supported:
a) Dune HD: ARM Linux
b) Alix-x86: Intel CPU 32 Bit Linux
c) Contactless
d) Debian: Intel CPU 64 Bit Linux Debian distribution
e) Popp: For Popp Hub, Mediatek CPU, OpenWRT
f) Raspberry Pi: for the famous Raspberry Pi, ARM based
g) Ubuntu: Intel CPU 64 Bit Linux Ubuntu distribution
h) Windows: For Windows Operating System
Other platforms may be supported as well by one of these binary distributions.

2. Z-Wave transceiver connected to the platform containing a Z-Way " license. Currently, the 'RaZberry Shield’
always comes with an internal license enabled, while the USB Stick called UZB needs an additional license
applied. Z-Way " may also run on platforms with embedded Z-Wave transceivers (such as Popp HUB, Dune
HD set-top box), but this requires special arrangement with the manufacturer. Please refer to the section [2.3|for
more information.

Please note that Z-Way" will start on a certain platform without having a Z-Wave transceiver or a licensing key.
However, in this case is no support for Z-Wave. Still, this may be a good starting point to test the software free of
charge. Please refer to the section [6|for possible applications usable without having Z-Wave enabled.
Z-Wave.Me currents support two basic hardware platforms with Z-Way™ licensing:

1. The RaZberry shield board for Raspberry Pi and compatible platforms

2. The USB Stick "UZB’ for PCs, set-top boxes, NAS, etc.

2.1 RaZberry shield board for Raspberry Pi

2.1.1 Compatibility

The RaZberry shield consists of a single PCBA with a connector to the standard GPIO pin header connector of the
Raspberry Pi minicomputer. This 25-pin header connector is available on all contemporary Raspberry Pi versions, such
as:

« Version A

« Version B

+ Version B+

» Version 2B

« Zero

» Version 3
Even if your Raspberry Pi version is not on the list above, there is a very high chance that the shield board will work
as long as your Pi has the 25-pin GPIO connector. You will find more information about the pinout of this 25-pin
connector on various websites[[]

You can use other pins of the connector for other purposes as long as they do not physically conflict with the board.

2.1.2 Pinout and options on board

The RaZberry board use only four pins of this header connector:
+ Gnd
« VCC (3.3V)
« Serial TX

le.g. http://www.raspberry-pi-geek.de/Magazin/2015/05/Raspberry-Pi-und-Arduino-via-UART-koppeln

10

http://razberry.wave.me/z-way-server

2 Z-Way" enabled Hardware

Figure 2.2: Components on RaZberry Hardware

« Serial RX
Figure [2.1|shows how the board connects to the 25-pin header on a Raspberry Pi 2
The board itself offers a few connection options as shown in Figure

1.

6.

Raspberry Pi Connector, used GPIO pins 1-10

2. Second open connector, identical to (1)
3.
4. Open hole for a PigTail antenna. You need to break off the PCBA antenna or unsolder resistor S1 to make this

Reset button

work.
Pads to solder a uFL connector for external antenna. See

https://www.adafruit.com/products/1661

for component details. You need to break off the PCBA antenna to make this work.
Two LEDs for status information

The two LEDs are used to indicate the success of the boot-up self-testing and as status indicators during normal
operation.

2.1.3 Boot-Up Self-Test

When powered up, the two LEDs light up, indicating that the self-testing has started. After about two seconds, they
are supposed to go off indicating that that self-testing has been passed successfully. If they remain lit, this is a clear
indication that the self-test failed or the device is not booting up. You will need to replace the hardware in such a case.

11

https://www.adafruit.com/products/1661

2 Z-Way" enabled Hardware
Q Operating frequency

Current frequency: EU
€ Can be unknown, unsupported or any region (EU/US/RU/....)

-~ I I E)

Figure 2.3: Frequency Change Option in Z-WAVE EXPERT USER INTERFACE

2.1.4 LEDs during Operation

During normal operation, the two LEDs remain turned off except:
+ Green LED will light up when data is transmitted.
« Red LED will light up when the Z-Wave transceiver is either in Inclusion or in Exclusion mode. Please note
that these are special modes of the transceiver that block normal data communication with other nodes in the
network.

2.1.5 Frequencies

The RaZberry shield itself can be tuned into every frequency used by Z-Wave. However, to protect the transceiver
and Z-Wave from high energy emissions on nearby frequencies (primarily 4G/LTE cellular radios using the 852 MHz
frequency band), an external antenna filter is used. This limits the frequency changes to countries that share the same
antenna filter. Currently, there are three antenna filter versions identified by their SKU codes.

. SKU: ZMEEUZB2 (865...869 MHz):
Europe (EU)[default]
India (IN)
Russia (RU)
PR China (CN)
RSA (EU)
Middle East(EU)
. SKU: ZMEUUZB2 (908 ... 917 MHz):
All the Americas except Brazil and Peru (US) [default]

— Israel (ISL)
. SKU: ZMEAUZB2 (919 ... 921 MHz):
Australia/New Zealand/Brazil/Peru/Malaysia (ANZ) [default]
Hongkong (HK)
Japan/Taiwan (JP)

— Korea (KR)

There are two options to change the RaZberry operating frequency:

1. If you use Z-WAVE EXPERT USER INTERFACE , just choose the frontend on [Network)) Management| as shown in
the figure[2.3] For more information about this Z-WAvVE EXPERT USER INTERFACE , please refer to chapter/7]
2. There is a shell script available at

http://www.z-wave.me/fileadmin/download/changezwf.sh

Just execute the script with

2.1.6 Certifications

RaZberry is certified for use in different countries.

CE / Europe

RaZberry complies with the new Radio Equipment Directive of the European Union in general and the EN 300 220
version 3.1.1 in particular. Full CE declaration can be found in Annex[A] The device also complies with the European
ROHs and REACH regulations.

12

http://www.z-wave.me/fileadmin/download/changezwf.sh

2 Z-Way" enabled Hardware

Figure 2.4: USB Stick UZB

FCC / North America

The RaZberry shield was successfully tested for FCC. The FCC identifier is
2AAYUZMEURAZ.

Z-Wave Plus

The RaZberry shield is a certified hardware platform and a complete solution according to Z-Wave Plus. Please refer
to the certification database

http://products.z-wavealliance.org
for more details.

2.2 The USB Stick UZB

The USB Stick "UZB’ allows enabling Z-Way™ on various platforms. Figure 2.4/ shows the device.
It is plugged into a free standard USB port. UNIX-based operating systems will recognize the stick and generate a
virtual serial device named or or similar. Windows will generate one virtual

serial port)

Once Z-Way" is started, it will connect to the Z-Wave hardware using this virtual serial device.

The USB stick is very small (presently the smallest Z-Wave device in the world) and will stick quite close to the
enclosure of the PC or NAS. This may interfere with the wireless range. If you experience problems with the wireless
range, please use a standard USB extender cable to get the UZB antenna further away from the PC.

In case the UZB is not loaded with a Z-Way" license (the stick is generally sold in two versions, one with a license
and one without for use with 3rd party software), the license can be loaded once Z-Way™ is up and running. Please
use the Z-WAVE ExPERT UsSER INTERFACE as described in Section[7]to apply the license. The license is a simple string
that usually comes printed in a scratch card. Go to lNetwork>> Controller InfO] and click on the button (License Upgrade] . You
will see a dialog as shown in Figure[2.5]

The button leads you to instructions about how to extend the capabilities of the UZB stick by buying extra
licensing files. The input field below allows inserting and applying the license key manually. Please note that:

+ You must be connected to the internet to activate the license key.

« Every license key can only be used once (like scratch cards for prepaid phones).

« It is possible to apply various license files to the same hardware.

« The license is stored in the hardware. You can do a complete reinstallation of Z-Way™ on your platform or
connect the UZB to a totally new platform without losing the license. However, loosing or damaging the UZB
key means loosing the license!

It is possible to run multiple UZBs on one single hardware platform or even combine a RaZberry shield with a UZB
on the same Raspberry Pi. Each piece of hardware will then manage its own network of Z-Wave devices having its
own Home ID. However, Z-Way™ allows using devices of different Z-Wave networks together. This can be used to
use products with different frequencies in one controller.

In order to enable a second Z-Wave transceiver (dedicated onboard, UZB or RaZberry), please use the standard user
interface as described in Chapter[4] Go to the app management section and start another instance of the app *Z-WAVE
NETWORK Access’. Choose the new virtual serial device created by the new hardware.

13

http://products.z-wavealliance.org

2 Z-Way" enabled Hardware

License Upgrade

‘Your Z-Wave transceiver contains an firmware internal capability management that can enable/disable certain functions for the hardware. This include the maximum number of devices
controllable or other function enhancements.

#) Get a license Key

If you have acquired a licensing key for such an function enhancement you may include this key here to extend the functions and capabilities of Z-Way.

& Insert your license key

Figure 2.5: UZB license upgrade

Please note that the standard user interface will support devices from two networks, but you need to use the Z-Wave
ExPERT USER INTERFACE to manage the second network. The inclusion and exclusion functions of the standard user
interface will always use the first Z-Wave network.

2.2.1 Boot-Up Self-Test

On being powered up, the blue LED will light up, indicating that the self-testing has started. After about two seconds,
the LED goes off, indicating that that self-testing has been done successfully. If the LED remains lit, it means that the
self-testing has failed or the device is not booting up. You will need to replace the hardware in such a scenario.

2.2.2 Frequencies

The Z-Wave transceiver itself can be tuned into every frequency used by Z-Wave. However, to protect the transceiver
and Z-Wave from high energy emissions on nearby frequencies (primarily 4G/LTE cellular radios using the 852 MHz
frequency band), an external antenna filter is used. This limits the frequency changes to countries that share the same
antenna filter. As of now, there are three antenna filter versions identified by their SKU codes.
. SKU: ZMEEUZB2 (865...869 MHz):
Europe (EU)[default]
India (IN)
Russia (RU)
PR China (CN)
RSA (EU)
Middle East(EU)
« SKU: ZMEUUZB2 (908 ... 917 MHz):
— All the Americas except Brazil and Peru (US) [default]
— lIsrael (ISL)
. SKU: ZMEAUZB2 (919 .. 921 MHz):
- Australia/New Zealand/Brazil/Peru/Malaysia (ANZ) [default]
- Hongkong (HK)
- Japan/Taiwan (JP)
— Korea (KR)
There are two options to change the UZB operating frequency:

1. If you use Z-WAVE EXPERT USER INTERFACE , just choose the frontend on [Network) Management| as shown in
the figure. For more information about this Z-WAVE EXPERT USER INTERFACE , please refer to Chapter 7]
2. There is a shell script available at

http://www.zwave.me/fileadmin/download/changezwf.sh

Just execute the script with

14

http://www.zwave.me/fileadmin/download/changezwf.sh

2 Z-Way" enabled Hardware
2.2.3 Certifications

The UZB is certified for use in different countries.

CE / Europe

The UZB complies with the new Radio Equipment Directive of the European Union in general and the EN 300 220
version 3.1.1 in particular. Full CE declaration can be found in Annex|A] The device also complies with the European
ROHS and REACH regulations.

FCC / North America

The UZB stick shield was successfully tested for FCC. The FCC identifier is
2AAYUZMEUUZB.

Z-Wave Plus

The UZB USB stick is a certified hardware platform and a complete solution according to Z-Wave Plus. Please refer
to the certification database

http://products.z-wavealliance.org
for more details.

2.3 Other hardware platforms

It is possible to port Z-Way " to other hardware platforms beyond what is supported by binary distributions. Before
contacting the Z-Wave.Me team, you can check if your platform meets the requirements for Z-Way" to run on. The
general requirements are:

« min. 200 MHz CPU clock speed,

« CPU architecture based on ARM, Intel or MIPS, as well as a GNU-based development tool chain,

« min. 16 MB Flash memory and 12 MB RAM,

« Operating system supports POSIX-compatible API.
There is a simple test to check if certain hardware on a platform is capable of running Z-Way" . Follow the instructions
given on

http://razberry.z-wave.me/index.php?id=28.

Only after you have double-checked that a binary distribution runs on your system or that the compatibility test has
been passed, you may want to contact the Z-Wave.Me team for further discussions about porting and licensing fees.

15

http://products.z-wavealliance.org

3 Preparation and Ways to Access the System

3.1 Installation on Raspberry Pi

Before you can use the RaZberry solution, you need to complete your gateway hardware and install the software.
Here are two ways to install and start Z-Way " :
+ A: You do not have Linux OS on your Raspberry Pi installed yet. Please download an SD card image (minimum
8 GB) from the download section of
http://razberry.z-wave.me

. It is based on the Raspberry Pi distribution “Jessie”
« B (recommended): You already have a working Linux (Jessie) running. Log in and execute the following com-
mand line:

You may need to configure the Wi-Fi access point of your Raspberry Pi in order to allow direct wireless access.

3.2 Installation on other platforms using UZB

3.2.1 Unix-based Platforms

Let’s assume you already have shell access to your system. You can download a binary distribution from
https://razberry.zwave.me/z-way—server

and unpack it. The code can run on every place in the filesystem. Nevertheless, we recommend using

as the folder to store the codebase. The folder content looks as shown in Figure[3.1] For more information on the files
and the file structure of Z-Way™ , please refer to Chapter|[11.4]

Z-Way " can then be started using the simple shell command from inside the Z-Way" folder:

Once the code is started, it is possible to access the standard user interface using

http://localhost:8083
To use Z-Wave, the correct port of the Z-Wave transceivers virtual serial port must be configured. Please go to the
user interface menu and open the app *Z-WAy NETWORK AccEss’ as shown in Figure[3.2] for more information about
Z-Way " aps please refer to Chapter@
After checking the right virtual port created by the operating system, please configure this port name and save the
settings. Now Z-Way" should be up and running, and you may want to create a startup script to make sure Z-Way"™
is running right after booting.

P

[~

I

I~

I

[~

automation config htdocs libs libzway modules
modules- translations ZDDX z-gettty- ChangeLog config.xml
includes config

z-cfg-update z-gettty z-way-server

Figure 3.1: Folder Content of Z-Way "

16

http://razberry.z-wave.me
https://razberry.zwave.me/z-way-server
http://localhost:8083

3 Preparation and Ways to Access the System

Z-Wave Network Access »
{'eumrl

(1) +

Figure 3.2: Z-Wave Network Access App

15 Z-Way Service Setup — X

Welcome to the Z-Way Service Setup
Wizard

The Setup Wizard will install Z-Way Service on your
computer. Click Next to continue or Cancel to exit the Setup
Wizard.

Gane

Figure 3.3: Z-Way " Windows Setup Wizard

3.2.2 Windows

First, note that the Windows platform is only partly supported. There is a binary distribution for Windows, but it
certainly lacks the level of testing required. Please use the binary Windows distribution at your own risk.

Install the MSI file and start it. You will see a nice wizard—see Figure [3.3|—guiding you through the setup process.
The files are installed on the folder of choice as shown in Figure [3.4]

If the UZB stick is plugged into the system, there is a new COM port created for this stick. Figure 3.5 shows the
Windows hardware manager with the new port. After passing the initial setup page, open the app Z-WAy NETWORK
Access’ and double check the right COM port. Note that there is a very special syntax for the COM port "\\COM3’
for serial port 3.

Figure [3.6]shows this dialog.

Under Windows, Z-Way " runs as a service. You find the service entry in the Windows Service Management as shown
in Figure[3.7] This dialog also allows starting and stopping the service.

3.3 Local and Remote Access

Z-Way " can be accessed in several ways:
« Using a standard web browserﬂ on the controller’s IP address. There is an embedded webserver on Port 8083
providing the web pages of the user interface.
« Using a standard web browser but the redirection service

find.zwave.me

The user interface is similar, but there is no need to be on the same IP network or to install an explicit port
forwarding.

« Use one of the native apps from Google Playstore or Apple iTunes. These will, however, use the two same
services for local and remote access as mentioned above and will only render the user interface differently.

!We recommend Chrome, Firefox, or Safari since we frequently see problems with MSIE.

17

find.zwave.me

3 Preparation and Ways to Access the System

‘E Z-Way Service Setup - X

Installing Z-Way Service Z-WAVEYME

Please wait while the Setup Wizard installs Z-Way Service.

Status: Copying new files File: [1], Directory: [9], Size: [6]
I

ok e

Figure 3.4: Z-Way"" Windows Installation

Ha Devices and Printers - o X
« ~ 4 Fa > Control Panel > Hardware and Sound > Devices and Printers ~ O Search De.. 0
Addadevice Add a printer SIE]
S~— s
Generic Non-PnP Microphone MSEDGEWINTO Speakers (High USE Tablet
Monitor (High Definition Definition Audio
Audio Device) Device)

~ Printers (3)

==

Microsoft Printto Microsoft XPS
PDF Document Writer

~ Unspecified (1)

UZe (CoM3)

9 items

0

Figure 3.5: Windows Hardware manager with new COM port

Nane

Z-Wave Network Access

Serial port to Z-Wave dongle

wcoms| x

Internal name
zway

© should be a valid JS key string. Don't change unless you know what you are doing

Figure 3.6: Z-Wave Network Access App with COM Port

18

3 Preparation and Ways to Access the System

Services - [m] X
File Action View Help
esmEcE Hml » =0
. Services (Local) Services (Local)
Z-Way Service Name ’ Description Status Startup Type G
&L Windows Perception Service Enables spatial perception, sp... Manual (Trigger Start)
op the service £k Windows Presentation Fou... Optimizes performance of Wi... Manual
Restart the service D a A A . .
&k Windows Push Notification... This service runs in session 0... Running Automatic
&k Windows Push Notification... This service hosts Windows n... Running Automatic
Description: &L Windows Remote Manage... Windows Remote Managem... Manual
Z-Wave.Me Z-Way Service & Windows Search Provides content indexing, pr.. Running Automatic (Delayed Start)
& Windows Time Maintains date and time sync... Manual (Trigger Start)
&) Windows Update Enables the detection, downl... Running Manusal (Trigger Start)
inHTTP Web Proxy Auto-... WinHTTP implements the cli.. Running Manual
ired AutoConfig The Wired AutoConfig (DOT3... Manual
&L WLAN AutoConfig The WLANSVC service provid... Manual
&5 WMI Performance Adapter Provides performance library ... Manual
&1, Work Folders This service syncs files with ... Manual
& Worlstation Creates and maintains client... Running Automatic
€ WWAN AutoConfig This service manages mobile .. Manual
1€ Xbox Accessory Manageme... This service manages connec... Manual
box Game Menitering This service monitors games. Manual (Trigger Start)
box Live Auth Manager Provides authentication and ... Manual
box Live Game Save This service syncs save data f... Manual (Trigger Start)
& Xbox Live Networking Service This service supports the Win... Manual
Z-Wave.Me Z-Way Service Automatic

'\ Extended | Stendard /

Figure 3.7: Z-Wave as Windows service

Access
Local IP Ethernet

Advantage
very fast, all data stays within own home

Disadvantage

no secure connection due to missing IP
certificates, IP address must be known, no
access from outside the home

depends on external service, more delays

Find Service worked independent of local network set-
ting from everywhere, very safe due to
complete end-2-end security

very fast and secure

Local IP WIFI another WIFI access point, no access from

outside the home

Table 3.1: Comparison of Access methods

«+ Use your own web or native app-based user interface. Again, you will then use one of the two options mentioned
above.
Both the local access and the remote access using the find-service have their pros and cons as listed in Table 3.1}
The initial access to the user interface must be done using one of the local access routes. Once Z-Way™ is running,
the first access to the interface asks for some basic setup such as the admin password and an email address to recover
this password. Figure[3.8|shows this screen. The number provided in the title (1) is the unique Z-Way Platform IDof
the device and it will be needed in the future to access the controller remotely using the find service.

Please remember this Z-Way Platform ID!

The @ on the upper right side allows changing the interface language from standard English to your chosen language.
If your language is not yet available, you may want to consider contributing a translation. Please refer to Chapter
[[0.3/for details on how to do this.
The language selection can be used for the user interface from this time on, but it can be changed in B
Please note that the email address provided for email recovery will not be stored outside your controller, e.g. in a cloud
service. This provides extra security but also means that certain processes like restore are a bit more complicated than
is usual.
After completing the setup, a welcome screen will guide you through the system and introduce the basic user interface
terms/dialogs.

« Element,

« Element View,

19

3 Preparation and Ways to Access the System

Q
Welcome to Your Smart Home 53954

0 You need to set the default password for the user admin. (minimum
6 characters)

Login: admin

*Insert new password:
*Retype password to confirm:

Email:

© Please provide the email address in case you loose your password. Also
get access to additional features e.g. CloudBackup.

Figure 3.8: Initial setup of the Z-Way " User Interface

« Element Configuration,
« Dashboard,
« Event,
« Timeline,
* Apps
It also offers buttons for direct access to the two most common actions right after installation:
+ Add a new physical device.
« Add some virtual device, internet service or application.
After completing the setup, it is possible to access Z-Way"™" using the find service, or install a native app for the mobile
phone. Open the url
http://find.z-wave.me/
The dialog on this find service, as shown in Figure[3.10] is intentionally simple. It offers two ways to log in:
« Using your Z-Way Platform ID, along with your login name (Example: 23333/admin’) and your password for
remote login and redirection
« In case you use the service from a PC or a mobile phone within your home, the service will detect this and
show the IP addresses of your Z-Way" controllers. It is possible that a Z-Way" controller has two IP interfaces
(Ethernet + Wi-Fi). In this case, both addresses are shown. Clicking on the IP address will lead to the local IP
login screen, as shown in Figure[3.9] where only name (e.g. admin) and password are required.
The menu option in the setup menu of the user interface will terminate the session and return you to the login
screen or the find service depending on how to log in. You can always force the termination of the find session by
calling the URL
http://find.z-wave.me/zboxweb

3.4 Security and Privacy

Security and privacy are of great importance. Z-Way™ tries to maximize security and privacy and will not compromise
them in order to improve user experience and convenience.
« All user data including login name and email address are stored only locally, which means that the controller
must be available and connected to restore passwords. We believe that this is a robust security and privacy
measure.

20

http://find.z-wave.me/
http://find.z-wave.me/zboxweb

3 Preparation and Ways to Access the System

Q
Welcome to Your Smart Home 53954
Login
admin
Remember me
© Forgot your password?
%] Login

Figure 3.9: Login on local IP address

Z-Way Remote Access

79033/admin

[a)
KB secure connection

Direct connect to Z-Way:

Figure 3.10: Remote Login Screen

21

3 Preparation and Ways to Access the System

« Z-Way" offers certain cloud-based services. This requires certain services and connections to the Z-Way"™
cloud service:

- Right after boot-up, the Z-Way™ controller will connect to the find service announcing its presence. This
is done using a reverse ssh service. The client side of this service is available on the Z-Way" server and
you can review its work and source code. If you don’t like this service, you can turn it off using the Z-WAay
SMART HOME INTERFACE. However, be prepared not to have the find service available anymore.

— The backup to cloud service will also create a copy of your device data on the cloud service. This is very
convenient and ensures that you have a backup file when needed. If you feel uncomfortable leaving a copy
of your smart home configuration on the Z-Way™ cloud service, just don’t use this service and turn it off.

« The find service allows https connection and provides a valid certificate issued by COMODO RSA Domain
Validation Secure Server CA. Please check the validity of the certificate before using the find service. This means
that the access using the find service has established a complete secure connection from the web browser via
the find service to your controller at home.

« There is no https access enabled to the local port. This is because there is no way to create a valid certificate
on an IP address that is assigned dynamically using DHCP. It would still be possible to run encryption with
https, but we believe that this would be mimicking security without having real security. That’s why we only
keep http to send a clear message about the risk of accessing a local IP address. We strongly recommend doing
an initial password setting and subsequent local access using Wi-Fi only since Wi-Fi comes with its own very
secure encryption based on WPA.

22

4 The Web Browser User Interface

The Z-WAy SMART HOME INTERFACEis considered the main control interface of Z-Way"™ .

A screenshot overview is shown in Figure[d.1jmarking the essential parts of the interface. It looks similar on different
devices such as a desktop PC, smartphone, and tablet (both native app and browser), but will adapt to the screen size.
The Z-Way SMART HoMmE INTERFACEfollows some very clear logic thats was developed by Prof. Christian Paetz and
presented the first time on the Smart Home Summit 2014 in Munich/Germany. Annex [Bshows the short slide deck
of this initial presentation.

The following basic rules apply:

1. Elements: Every function of any device is shown as one single (No. 7). (In case a physical device has multiple
functions, like switching and metering, it will be offered as multiple elements). All elements are listed in the
elements view (No. 3) and can be filtered by function type (switch, dimmer, sensor) or other filtering criteria.

2. Elements Configuration: Every element offers a configuration interface (No. 8) for changing names, removing
it from the screens, etc. Important elements can be placed in the Dashboard (No. 1).

3. Event: Every change in a sensor value or a switching status is called an “Event” and is shown in the timeline
(No. 4). Filtering allows monitoring the changes in one single function or device. Besides, elements can be
assigned to different rooms (No. 2).

4. Apps: All other functions such as time-triggered actions, the use of information from the internet, scenes
plugin of other technologies, and services are realized in apps accessible in the setup menu (No 6). These apps
are ready-to-use scripts/templates that can add extra logic and functionality such as logic rules like “IF->THEN,”
scene definitions, timers, and interactions with external (non-Z-Wave) devices connected via USB dongle or via
internet. Some apps are built into the system. More can be downloaded from an app store. To use an app, you
create an instance of this app and configure its properties. If useful, you can create more than one instance of
one single app. The apps can create none, one, or multiple new elements and events. You can install new apps
and manage them using the menu Configuration -> Apps.

4.1 Z-WAY SMART HOME INTERFACEDaily Usage

4.1.1 Standard Element View

Figureshows the standard element view of the Z-WAy SMART HOME INTERFACE. Elements with an icon, buttons, or
variables are placed side by side. Depending on the screen size, they are grouped in one (mobile phone), two (pad), or
three (PC screen) columns.
The very same display is available on the (No. 1), the (No. 2), and the (No. 3). The
element view shows all elements (No. 7) available while the dashboard shows elements that where manually selected
for display on the dashboard. The clock on the topline menu (No. 5) shows the actual time in the time zone of the
gateway (not the actual position of the browser). The elements can be filtered by element type or can be ordered by

« Time of creation (ascending or descending)

« Given name in alphabetical order (ascending or descending)

« Last update

« Custom
The button turns the user interface in a reordering mode. Just drag and drop elements to reorder them.
After the new order is saved, it is available as ’custom’. The same logic can be applied to all view showing elements
(Element View, Dashboard, and Room View).
A search field allows searching for given names of the elements.
All elements can be assigned to “tags”: Tags are text blocks that can be arbitrarily chosen. Typical tags are “Tempera-
tures,” “Energy,” and “Outdoor” Multiple elements can have the same tag and one element can have several tags. By
selecting a tag, only elements are shown that are tagged with this name.
Tags are managed on the element configurations described below.
Figure [4.2] shows two typical elements: Each element has a given name. This name may refer to the function or the
position. Please make sure to keep the name short enough so that no display problem is created. Each element also
has one or several icons. In case the element represents an actor function, the icon usually refers to the switching
state of the actor (on or off, up or down). Changing icons also indicate the status of binary sensors such as motions
detectors. Analog sensors typically only have one icon. The upper element is an actor allowing to be switched on and

23

Z-WAVEYME

© 0 e @

A \

4 The Web Browser User Interface

;I ’I(z) \@14i08:16

| I
1 2 3 4 1 0 5 & Drag&Drop | Y All elements (30) & Apps 6
Devices
Sleeping Room 9 Sleeping Room g a
Popp Frequency (#18) Popp Electric Meter (#18) P Customize
©13:50 50.0 Hz © 14:00 19.7kwwvh & My settings
8 4 Management
o ’

Sleeping Room 9 Living Room 9 a N
Popp Electric Meter (#18) Popp Electric Meter (#18) ® News 9
@ 14:00 226.1v © 14:00 0a @ Logout
Sleeping Room ﬁ a Living Room '9 a Kitchen 3 Q
Popp Switch (#18) Philio Technology Corp ... Philio Technology Corp ...

\ © 14:06 96 % © 14:06 27.8c
Living Room M Sleeping Room @ a Sleeping Room 9 #
Philio Technology Corp ... Philio Technology Corp ... ExchangeRate
© 1408 off 01323 off ©14:08 113.9usD

Figure 4.1: Z-WAY SMART HOME INTERFACE

Sleeping Room

Popp Electric Meter (#18)

@ 13:40

Sleeping Room

Popp Switch (#18)

Figure 4.2: Elements

24

DN

226.1v

il =

vV VvV ¥V VvV VvV Vv Vv

4 The Web Browser User Interface

Z-WAVE)ME | # 0D &8 2 @320

Configuration view: Z-Wave.Me Water Alarm (10.0)

Element name: Z-Wave.Me Water Alarm
Generated by: Z-Wave device #10

Hide element

O Hide this element in any View. Activate 'Show hidden' filter to make them visibia again or if you want to change them back.

X Delete element

@ It will be removed from elements view and can only reactivated in Menu > Devices > Management > Z-Wave Devices > Device #ID. (see link above 'Generated by')

Add to dashboard
Hide events for this device

Assign to room: Not assigned to the ... ¥

Tags: Add new tag +

) Cancel

Figure 4.3: Elements configuration - upper part

off.

The 2 (No. 8 on Figure on the right-hand side opens the element configuration dialog. The symbol left to the
configuration wheel depends on the type of device. For devices with analog values such as rain sensors, temperatures,

ol
etc., the icon D will open a 24-hour history of the sensor value. Devices with 24-hour history also show a time
stamp when the last value update was received. Clicking on the large icon itself will call for a value update, but please
keep in mind that battery-operated devices will only send updated values after the next wakeup. For event-driven

devices such as actuators or binary sensors, an icon m will show a list of the last 10 events with the time stamp.
One click away is then the full list of events, as described in Section|4.1.1| but filtered for this element.

Element Configuration

Every element shown has its own configuration dialog (No. 7 on . Clicking on the o symbol on the upper
right-hand side opens this dialog.

Figure[d.3]shows the upper part of the element configuration dialog.

The element name is the given name of the element. Z-Way"™ tries to automatically find a reasonable name, but the
user should change this name according to the specific setup of the home.

« Generated By: This refers to the physical device of the Z-Way" application that generated this element. In the
example above, this device is the physical Z-Wave device with Node ID 2. Clicking on the button with the name
of the element-creator leads to the configuration dialog of the physical device, i.e. the Z-Way™ application.

« Hide element: As explained in the dialog, this checkbox will hide the element. However, this setting can be
reversed by showing hidden devices. This setting is for cosmetic view only.

« Delete Element: This checkbox allows removing the element. It will not only disappear from the element view
but also from any dropdown list to setup device relationships, etc. For information on how to re-activate such
an element, refer to the user settings dialog description in Section[4.2.4]

« Add to Dashboard: This places the element on the dashboard.

« Hide events from this device: This keeps the device in the element view or Dashboard, but no events of this
device will be shown in the event timeline.

« Assign to room: This allows assigning this element to a certain room or changing this assignment.
Figure[4.4shows the lower part of the element configuration dialog. The tag option allows setting and removing tags.
When a tag name is inserted into the text field, it autocompletes known tag names.

The custom icon sub-dialog allows changing the icons of the element. Each element has one, two, or three icons
depending on the status indicated. Each of the icons can be replaced by an own individual icon. Just click on the

25

4 The Web Browser User Interface

Z-WAVEIME @ B o1s2258 &
Tags
Add new tag +
LightScene X

™ Cancel

Custom icons

Figure 4.4: Elements configuration - lower part

pencil button to change the icon. To download more icons, refer to the customization section in the configuration
menu.

Room View

The Z-WAy SMART HoMmE INTERFACEallows managing different rooms and assigning elements to rooms. Each element
can be placed in one room only.

Clicking on the room symbol on the top menu opens the room view with a list of rooms, as shown in Figure
Each room has its own element with a background image that can be configured. It is possible to add new rooms
using the button labeled (Add reom) . The room is named and the number of elements in this room is shown. Per room
there are up to three sensors that can be selected as “quick-view sensors”. They are shown right below the name and
in the top menu in the individual room view.

Clicking on the room element leads to the room view, as shown in Figure [4.6]

The room view lists all the elements in the room. As in the element view, they can be re-arranged using the drag-and-

Z-WAVEME | & 0 e 0132547

< Add new room 2 Name ASC Q

Kitchen (3) Living Room (9) Sleeping Room (18)

@Don off €397 @0.0-

Figure 4.5: Room overview

26

4 The Web Browser User Interface

Z-WAVEXME | & 0 ®m @ 0133050 =
o . Living Room ~ off @ 97 % @ 0A <bDragaDrop &
- —
<5
Living Room m # Living Room m ¢ Living Room m .u.
Switch (#2) Everspring Power ... Everspring Power ...
(1] Q1322 off O13:22 off
Living Room m 0 Living Room m ¢ Living Room m a
Shenzhen Neo Electronics Popp Water Alarm (#4) Philio Technology Corp ...
@ 13:22 on @13:22 off D13:26 on
Living Room # Living Room m ¢ Living Room .u.
Philio Technology Corp ... Climate Control Popp Electric Meter (#18)
©1328 92 % ¥ Rooms 1322 0.0A

Figure 4.6: Room View

drop feature.
The top line shows up to three quick sensors and allows quick change of the room using the dropdown list. If your
browser supports gestures, you can change the rooms by swiping left or right.

Clicking on the o symbol of the room element or inside the room view in the top line opens the room configuration
dialog, as shown in Figure[d.7]

Each room can have an individual name. Besides some pre-installed images, it is possible to upload images for the
room. A checkbox defines the room image that is used as a background image in the room view.

The dialog allows assigning elements to this room which were not assigned to any room yet. Just click on the element

name in the list of [Available devices] .

The little checkbox on the right-hand side allows selecting up to three sensors as “quick-view sensors”.

Event Timeline

The event timeline is the forth menu item in the top menu.
The timeline dialog offers a chronological view of the events in the Smart Home. The events are:

« Change of status of actuators such as dimmers, blind controls, or switches

« Tripping of binary sensors (motion, door, etc.)

« Change of measured value of sensors

« Network status changes (device lost, device back, etc.)
The standard view of the timeline, as shown in Figure lists all events with the icon of the element, room info, time
stamp, name of the element, and status info. Every line item has a context menu on the right-hand side. This menu
allows

+ showing events of this source element only,

« showing events of this event type only,

« showing events that have the same event type,

« directly moving to the element configuration page of this element,

« hiding all events from this source.

4.1.2 News feed

Each Z-Way" controller is connected to an RSS feed. This feed contains news and alerts about the platform. Whenever
there is a new feed entry, the top menu bar will indicate this with a sign, as shown with Marker 1in Figure[.9] Clicking
on this opens the full list of news. This full list can also be accessed using the 'News’ menu item in the configuration
section, as described in Section[4.2.5

27

4 The Web Browser User Interface

Select an image

[| Display selected image as background

A Upload image

© The uploaded file must be smalier than 500.0 kB and in one of the foliowing formats: jeg,jpeg.gif.
© The recommended dimension of the images is 200 x 200 pX.

Devices in this room

© You can max. 3 sensors add to the room header (1/3).

MyScene % Philio Technolegy ... % [ShenzhenNeo ... % @

Available devices

Climate Control < MYs <+ Fire Protection < ExchangeRate 4 Dear Expert User = Mail Me Home 4 SecurityModule 14 <
SecurityModule 15 <4 Philio Technology ... ¥ Philio Technology ... = Philio Technology ... ¥ Popp Switch (#18) 4

Popp Frequency (#18) <+ Popp Electric Meter ... 4 Popp Electric Meter ... <= Popp Electric Meter ... 4 Popp Electric Meter ... <=

Popp Electric Meter ... <4 Everspring Power ... + Everspring Power ... Switch (#2) + Shenzhen Neo ... =+ Popp Water Alarm ... 4

Popp Water (#4) = Smoke Alarm (#5) 4+ Heat Alarm (#5) = Fibaro Temperature ... =

= Cancel

Figure 4.7: Room configuration dialog

Z-WAVE)ME a | © 14:25:01
Y Show all Today C'
Living Room -
16:06 | Fan is off
Living Room -
16:06 | Plug is off

Figure 4.8: Timeline

Z-WAVEIME D | & -01:1&09 ZE

% izl =k

P Livingroom
ﬁ Dummy Device RGB 30 SecurityModule 33
-

0 0 .HGB' . o

Climate Control

* ¥ Rooms 1

Figure 4.9: News Indicator

28

4 The Web Browser User Interface

& Apps >
£ Devices >
P Customize >
= My settings >
#~ Management >
@ News >
(% Logout >

Figure 4.10: Configuration menu

4.2 The Configuration Menu

Clicking on the menu item (marked as No. 2 in Figure [4.9) on the right-hand side opens the configuration menu.
The configuration offers various functions to enhance and configure the smart home system as such and the user
interface. Figure shows the configuration menu of Z-Way " .

4.2.1 Apps

This menu option allows managing the home automation applications and interfaces of Internet or IP-based services
or devices.
Z-Way™ apps are like software applications that use the infrastructure of the Z-Wave network to provide application
solutions and dependencies. These software applications also extend the capabilities of the network and implement
automation functions.
Like any other application software such as those for PCs, some Z-Way'" apps are preinstalled on the device, and
others can be downloaded and installed by the user. Like application software, some software solutions can only run
once while others can be started multiple times.
The app menu has three parts:

« List of apps locally available for use.

« List of apps available on the central server and ready for download.

« List of apps that are active and running.
The list of local apps, as displayed in Figure[4.11] shows a small subset of apps that are already on the local devices.
The top part shows some of the apps that are most frequently used (featured apps). A filter allows filtering for certain
app types; ordering and direct search in the search box also help to find the right app. If there are active instances of
the app (software running x times with different parameters), this is indicated right below the name of the app.
Clicking on the name will open a dialog with further information about the app. Clicking on the (+J button will lead
right to the configuration page of the app.
The online app list, as shown in Figure [4.12] offers the same functions. However, apps need to be downloaded first
before they can be configured and started. Clicking on the download button will copy the app to the local repository
and start the configuration dialog, as shown in Figure[4.73]
Each app has its own name that can be changed. Depending on the function of the app, there are several different
setup parameters.
Please note again that some apps can be started multiple times while other apps are “singletons” They must
only run once on the system. Once they run, they will disappear from the repository since they cannot be
started again. Configuration of such a singleton is still possible using the menu of running apps. If such an

29

4 The Web Browser User Interface

Z-WAVEIME | @& | DO & eo O30

‘ &3 Local Apps ‘ @ Online Apps i Active

Y All Apps (45) 1% Name ASC Enter search query Q

Featured Apps

If -> Then » Local Weather » Schedule »
+ + +

All Apps

Association » Automated Locking of Door » Automated Switch Off »
+ + +
Climate Control » Code Device » +| Correct sensor value »
—
L) + | x + +

Figure 4.11: Local Apps

zwaverme | & [| D [8 e (0133828

& Local Apps 2 Online Apps LAc‘tive

amazon
~—7

alexa 1l

% & A 7 424 ﬂ Je ek ok 7y | & 478x ﬂ
=4 b
Enter search query Q
Automation Basics (21) >
uermaon e
HubApp @
SwitchDevice Hub App Custom Command ... Event Button Configurator
Trirtr e | & 1x Trirtrirey | & 87x Trirtrdrdr | & 5x 77 | & 246x Tririrey | & 308x
3 3 3 3 3

Figure 4.12: Online Apps

30

4 The Web Browser User Interface

Z-WAVEIME | # 0O B ®a 133931

& Local Apps @ Online Apps Active

Expand all Enter search query Q

Base Module [- x
o Battery Polling L - A R
Climate Gontrol - x

@ CloudBackup [- B B
) System Clock (GRON) & ¢ x
24 Hours Device History 8¢ x
~:~\ Dummy Device (3) v
< Inband Notifier & ¢ x

Figure 4.13: App Setup

app stops, the app entry will reappear in the local repository.

The tab for active app management is shown in Figure[d.14] It lists all active apps by app type. If there are more than
one app of the same type (e.g. 'IF->THEN’ is usually needed multiple times), the view is collapsed for this type of
application but can be expanded. It is possible to expand all sections of multiple app types using the checkbox on the
top. It is also possible to search for certain app names.

Every app line has a submenu with the following functions:

3 ,
. : Stop this app

. O : Allows cloning an app. This will open a dialog for a new instance of the same app with the same settings.
After saving these settings, the new app becomes active and is shown in the list too.

« — :Stop the App. It remains configured but is inactive. Once inactive, the green flame changes into a red ON
button to restart the app.
. o : Opens the configuration dialog. This is the very dialog to be completed during the initial start of the app.

Please refer to Chapter|[g|for more information on different apps.

4.2.2 Devices

The device menu allows managing physical devices. By default, it offers two physical device types: “Z-Wave devices”
and “IP cameras” However, if other wireless communication technologies are activated, they will be shown as well.
Please refer to Chapter 9] for more information on how to integrate further wireless technologies. This section will
also explain how to include/exclude and manage these devices and IP cameras.

Figure [d.75]shows the device list including EnOcean and 433 MHz devices.

Therefore, let us focus here on managing Z-Wave devices. Besides the standard buttons to add and manage devices
of the specific communication technology, Z-Wave offers one more button to link to a specific second Z-Wave user
interface for installers and professionals. Please refer to Chapter [7| for a detailed description of this very technical,
the so-called Z-WAVE ExXPERT USER INTERFACE . Please note that all day-to-day management functions can be done
without involving this very specific and technical interface.

In case the controller hardware supports the new Smart Start feature of Z-Wave, there will be another button to
include new devices - the QR code san as sown in Figurem

Smart Start is a new way to include devices into Z-Wave using the QR code provided with S2 authentication. The user
scans the QR code thats is stored in an internal so called provisioning list. Smart Start Devices will then announce to
be included when powered up. In case the S2 key is in the provisioning list the controller will automatically include
this new device without any further user interaction.

The button 'QR Code’ opens a dialog to capture the Device Key, either by typing them in or by scanning the QR.
Another menu tab allows managing the Device Keys already captured by not used for inclusion.

31

4 The Web Browser User Interface

Z-WAVEIME | & 0B e 0134022

w J Wunderground

Weather Forecast & Reports by Wunderground
£ Environment

& Pieter E. Zanstra (click for Recipe)

o112
Active
Name
Wunderground
Key

5e50f58248d7588b

City

Chemnitz

Country

de

Figure 4.14: Active App Management

ZZWAVEIME | & 0 | B o150820
Please select device type

fownv:

locean

@

Figure 4.15: Device Management Overview

fFéwnv:

Figure 4.16: Scan QR Code for Smart Start

32

@ Manage with ExpertUl

£ Manage with ExpertUl

+ Add new

v

+ Add new

+ Add new

+ Add new

+ Add new

[# Manage

[# Manage

[# Manage

[# Manage

E7 Scan QR code

[# Manage

4 The Web Browser User Interface

Z-WAVEIME | @& O B o134150 o

& Add new Z-Wave Device and identify it automatically

outarco™™* D-Link 1) danalock ?)a,.é-'ﬂ
- L
devaLo domi E; mectonics . & m
B FIBARO
FOREST 60" : WAY theatit

Lsmonss coen NOD! mund xﬂ
-

Figure 4.17: Z-Wave Device Vendor Overview

Please note that a standard web browser running on a standard PC may not provide the capability to scan QR codes.

Inclusion

To include a new Z-Wave device (one of the first steps needed to start a smart home system!) please click on the
button on the Z-Wave device part. This will open an overview of current Z-Wave device vendors by name and logo.
Figure[4.17] shows this overview.

Generally, there is no need to know the Z-Wave brand and product code. All Z-Wave devices are self-describing,
and automatically identified products will provide the same functions as the devices that were pre-identified. Thus,
experienced users will always click on the upper button to add a new unidentified Z-Wave device. The only reason
to find a specific device from the list is to get some additional information on how to include this device. This refers
to the button and the button push sequence needed for inclusion.

Since most Z-Wave devices have one Z-Wave inclusion button and single or triple click will do the inclusion, this
information is only needed for some devices with exotic inclusion options. Both the buttons to include an unknown
device and the right-hand side button of an identified button will lead to the same inclusion dialog as shown in Figure
4.18

It is recommended to exclude (reset) a device before it
gets included.

However, if you are sure that the device is new and in factory default state, you may skip this step. Right next to
the inclusion button there is another small button that defines if the device will be included with special security
functions. By default, the security option is enforced. However, some devices in the market may not work as expected
using the security function. In case there is a connection problem, unsecure inclusion may still work.

Once the inclusion mode has been started, the controller waits for devices to be included. Figure shows the
controller at this moment. The inclusion mode can be terminated using the same button. Any new device included
will also terminate the process.

In case the new device requires authorization, this needs to be done right after inclusion. Authorization ensures that
the device that appears on the user interface is indeed the device in hand. To ensure this the device offers either a QR
code to be read or a device individual PIN number, both types of information need to be provided to the user interface
manually. The controller will then match the information provided by the user with the information provided by the
device using wireless communication. Only in case they match the device can be used.

Authentication is only required for certain devices. In this case, a window like that shown in Figure[d.21]pops up asking
for the authentication information. Once given, they are checked. If authentication fails, a warning is displayed. It is
not possible to just repeat the authentication. The device must be excluded and re-included.

Any new device will be interviewed next. In this process, all functions announced by the device itself will be verified

33

4 The Web Browser User Interface

Z-WAVEIME | & 0 8 o134320 o

w

Domitech Products, LLC Smart LED Light Bulb

o Preparation

The device must be in factory default state. If you are unsure about it, just run the 2 Exclusion again

o Inclusion process

& Start inclusion n

o Automated configuration

o Manual configuration

= Cancel
Figure 4.18: Z-Wave Device Inclusion Dialog

Z-WAVEIME | # 0 | # o1te0038 &

Include device

4.7 Ready to exclude. [ETIY= GTE [0}

o Inclusion process

o Automated configuration

o Manual configuration

™ Cancel

Figure 4.19: Z-Wave Device Exclusion Dialog

34

4 The Web Browser User Interface

Z-WAVE)ME 4 B8 o16:54:54 k-

i st v

Include device

o Preparation

The device must be in factory default state. If you are unsure about It, just run the 23 Exclusion again

o Inclusion process v

=30

12 Configuring device, please wait... (#12)

68%

o Manual configuration

= Cancel

Figure 4.20: Z-Wave Device Successful Inclusion

Verify PIN code on the device

PIN 450C - 1421 - 539 -| 523€ -

Figure 4.21: Z-Wave Device Authentication

35

4 The Web Browser User Interface

Z-WAVE)ME | & 0O M8 oitess19 i

(#12) Device_12

Rename device

Device_12
Add new room +

Move all elements to room

No Rcom =

’ Z-Wave.Me Switch (#12)

Z-Wave.Me Switch (#12) Deactivate

Electric Meter (#12)

Electric Meter (#12) Deactivate

Electric Meter (#12)

Electric Meter (#12) Deactivate

Figure 4.22: Z-Wave Device manual configuration

and certain user interface relevant data will be called from the device. A progress bar such as that in Figure[4.20|shows
the status.

Once the interview was passed successfully, a dialog offers some initial manual configuration functions, as shown in
Figure [4.18}

« Rename the device as such. This device name only refers to the physical device and will not be shown in the
standard user interface. Use descriptive words like “Popp Smoke on sealing” to re-identify the device later.

« It is possible to move all elements shown below into one single room. If this is not done here, it is still possible
to move each element on the configuration dialog as described in Section[4.1.1]

« The list of the elements generated by the new device. Here you can change the name that will then appear on
the element overview, etc. You can also deactivate the element if you don’t see any need to have it.

« Some physical devices offer further hardware-specific settings such as wakeup interval time. If the new device
offers such configuration, another button for hardware configuration is shown. Please refer to the Z-WAvVE
ExPERT USER INTERFACE configuration description in Chapter [7.4] for more information on how to use this
dialog. Both dialogs are identical.

The interview process does not only detect all information from the device; it also tests the connectivity of the device.
Certain communication may fail. Another good reason for such a failure is that a battery-operated device goes into
deep sleep mode too fast. Figure[4.23|shows the error message in case of failure. In most cases, it’s OK to just redo
the interview and wake up the device.

If the second attempt at the interview fails, the controllers gives the option to accept the result or to redo the entire
process. Figure[4.24] shows this dialog box.

Once the interview has passed and all configurations are done, the device can be used.

Z-Wave Device Management

The second option for Z-Wave devices besides adding (including) new devices is the device management menu.
Clicking on the button button opens a menu with three tabs:
« Figure shows a list of the physical Z-Wave devices. The] button will open the very same device man-
agement dialog as described during manual post-inclusion configuration in Section The x} button opens
a dialog to remove the device. As shown in Figure[4.28|there are two options:
— Reset and Remove: This button will start the normal Z-Wave Exclusion Process. Exclusion requires that
the device to be excluded is still functioning and accessable.
— Remove: Only in case the device is defect nor not existent anymore this option shall be used. It will use
the Z-Wave function 'Remove Failed Node’ without any involvement of the device to be removed.

36

4 The Web Browser User Interface

SmartHome Ul

Configuration complete only 92%

© You must to wake up the device to complete the
inclusion.

Retry complete inclusion ‘ | CANCEL

Figure 4.23: Z-Wave device inclusion failed

SmartHome Ul

The auto-configuration of the device (Z-Wave Interview) did not complete. You may not have all device
functions available. You shouid reset the device and redo the inclusicn process.

2 Reset and Redo Inclusion Continue Anyway =

Figure 4.24: Z-Wave device inclusion repeated

37

Z-WAVEXME

O
Z-Wave devices

w Device_12 (#12)
w Device_13 (#13)
w Device_2 (#2)

w Device_3 (#3)

— .
= Z-Wave devices

c wv Philio PST02-5C (#17)

w Device_3 (#3)

c v Popp Water Sensor (#4)

c + Fibaro Smoke Sensor FGSD-002 (#5)

&

Figure 4.26: Z-Wave device battery overview

4 The Web Browser User Interface

@ 16:58:49

'? Battery status

Figure 4.25: Z-Wave device overview

Battery status
@ 13:11 € 13:11 - 14:11
©09:28 (09:28 — 10:28
@09:28 09:28 — 10:28

©09:28 09:28 — 10:38

f WAVE

£
5% Network status
L B <
o 0%
o 0%
L B <

%a Network status

100 %

95 %

100 %

100 %

- Figure[d.26)shows the battery status overview. The list can be ordered by the battery charging level.

« Figure shows a list of network status messages. This can be warnings for empty battery, devices lost, devices

replaced, etc. Clicking on the device name lists all the elements created by this physical device.

4.2.3 Customize

Z-WAVEXME w

= Z-Wave devices

~ Regenmelder (#30)

B D &8

© 17:00:04

¥ Battery status

feunv:

Figure 4.27: Z-Wave device network status

38

The customization menu option allows changing the look and feel of your Z-Way"™ user interface. You can add more
icons as device-specific icons and you can change the look and feel using skins. For more information on skins and
how to create them, please refer to Chapter[10.1] This menu here only deals with skins that are already available.
The menu offers four tabs. The tab shown in Figure[4.29shows the list of skins locally available. They can be activated
by just clicking on the green activation button.
The tab shown in Figure [4.30] offers the list of skins available for download. They must be downloaded first before
they can be activated and applied.

The tab shown in Figure[4.3T]lists the additional icons available on the controller. They can be activated per element
on the element configuration menu described in Chapter[d.1.1]

Network status

Device has low battery (20%)

4 The Web Browser User Interface

Z-WAVEIME | @ 0O & e 013

Device _10

= Reset and Remove €5 Remove

© Reset and remove starts exclusion process. © Please use this process only in case your device is really damaged, broken or not available

anymore.
= Cancel
fGWA\IE
Figure 4.28: Z-Wave Device Reset /Exclusion
Z-WAVEIME | @& B | o15144s -
£3 Local skins @ Online skins [24] | oeal icons H online icons
Figure 4.29: Local Skins
Z-WAVEXME ® B oisis7
&5 | ocal skins & Online skins (28] L ocal icons B Cnline isons
L=}
o » @]
o .0 .o i L] L] L]
[+ L _0 -] i]
BlankSkin » Sample - Default RED Skin » simplydark »
F 3 L E3

Figure 4.30: Skins on Server

39

4 The Web Browser User Interface

Z-WAVEYME | @ D | B oisis4e]
&5 | ocal skins @ Online skins 4| Local icons B online icons
. Upload a single icon & Upload packed icons
@ The upioaded fiie must be smalier than 30.0 k8 and in one of the foliowing formats: @ The uploaded fle must be smaler than 2.0 MB and in one of the folowing formats: zip, gz.
png.jog.jpeg.git. @ The recommended dimension of the images is 64 x 64 o

& The recommended dimansion of the images is &4 x 64 px.

Y Snow all

0000000005090 O
0020V POOHO V@O
00HGO6C0C0O0O00®HO
0006600 Oalrv Y
WAL

Figure 4.31: Local Icons

The tab shown in Figure offers additional icon sets available on the server. They must be downloaded first before
they can be activated and applied.

4.2.4 My Settings

In this dialog, as shown in Figure the local user interface settings for the logged in user can be changed.

Name: This is the name of the account. Even if this name is changed, the login name is NOT changed.

Email: This email is used for certain email notifications, for password recovery and for the recovery of cloud
backups.

Language: Click on the flags to change the user interface language.

Ul update rate: This is the refresh rate for the user interface web pages.

Expert View: Having the checkbox marked shows some system apps in the overview of running apps that are
not shown by default. For more information on apps, please refer to Chapter[6]

Events: The two checkboxes allow suppressing certain events. They are then removed from the timeline and
will not create any out-of-band alert.

Hidden events of devices: This is a list of the devices where events are deactivated in the element configu-
ration overview. This is the only way to reactivate them if needed. For more information about the element
configuration, dialog please refer to Chapter[4.1.1]

Figure [4.34 shows the lower part of the dialog. In the individual password can be changed.
The section shows a QR code to simplify the setup. Please refer to Section [5|for more information on
how to use this QR code.

4.2.5 Management

The menu item opens a new menu with options to technically manage the platform. These management
options are available for administrators only. Please refer to Section[4.3|for more information about the management
options.

News

As shown in Figure[4.35] this dialog lists all news entries received from the RSS feed.

Logout

The logout button cancels the user sessions of the Z-Way SMART HOME INTERFACE. In case of a login from

find.zwave.me

40

find.zwave.me

4 The Web Browser User Interface

Z-WAVEIME | # B | oisi817
& | ocal skins @ Online skins [2a] | ocal icons
Ochﬁﬁ
Default lcons » House Control »
F

1 B0 R Al 0o 0008
m.ﬁ © o0
Aa@dwn 208008

Cats - lcon Pack » Flat Smart Home lcon Set »

Figure 4.32: Icon-Sets on Server

zwaveme | & | [B o3z
My settings

*Mame:

Administrator

Email:

christian.paatz@gmal.con

Settings

tanguece:] Sy L I a2

Ul update rate [miliseconds) zooo

Expert View
|« Show System Apps

Events

|| Hide all devics events
[Hide all systerm events

Hidden events of devices

Stromverbrauch ¥
Solar altitude ¥

Figure 4.33: My Settings Dialog - upper part

41

‘ = Online icons

0006

Battery - lcon Pack »

FO80PL
(ONGIL I)
CRA0QE
FolBw@E

Smart House lcon Set »

@
&

Z-WAVEIME | # 252

Flur Luminiscence (#51) X
Raumbewegung FL 3

Temp WZ X

WZ Luminiscence (#52) X
Fibaro Luminscence (#53) ¥
IT %

Q My User Account
Login: admin

*Insert new password:

*Retype password to confirm:

2 Add mobile device

Figure 4.34: My Settings Dialog - lower part

4 The Web Browser User Interface

@ 15:14:06

Z-WAVEXME | @& 0O & ea 0131841

News

Thu, 1 Jan 1970 01:00:00 GMT

May | have your attention please! TEST
This is a test RSS feed ... TEST ... TEST ...TEST

Thu, 1 Jan 1970 01:00:00 GMT
RealFeed Test

Test of new RSS-Feature in Ul

Thu, 1 Jan 1970 071:00:00 GMT

First RSS-Message RAZ
First RSS-message for Razberry

Figure 4.35: List of Z-Way'" news

42

~

4 The Web Browser User Interface

Z-WAVEIME | # © 15:16:51

-]

ﬁ" User management

= Remote Access Management
@ Time Zone

& Bac kup & Restore

2 Factory default

1 Firmware update

B App Store Access

. 14 Report Problem

0 Info

€ € ¢ € £ € £ < £

Figure 4.36: Administrator Management Menu

Z-WAVEYME | # © 17:10:24 -]

ﬁ User management P

1% Name A5G Q
n Administrator &
n Local Uiser & ®

Figure 4.37: User Management

the user is redirected to the find.zwave.me overview page or else to the local login page.

4.3 The Management Interface

Figure shows the controller management menu. Please note that this menu is available for users with
administrator privileges only.

4.3.1 User Management

Figure[.37)shows the list of users. It is possible to add more users, change their settings, and remove them. Clicking
on the setup button opens the user setup dialog. It allows managing
+ Name and Email
« Role types: This defines the access rights of the user account. Admin allows accessing the management sub-
menu. Standard users will be role-type “users.” It is possible to further restrict a user account to real local access
or to make it an anonymous user.
« Language of the user interface
« Password settings

4.3.2 Remote Access Management

The dialog shown in Figure[4.38|allows managing the remote access functions of the controller. By default, the remote
access function is activated. This enables accessing the controller from any end device in the Internet, e.g. a mobile
phone. Please refer to Chapter [3.3] for information on how this remote access is implemented and what security
implications this function has.

The remote support function is deactivated by default. This function allows support staff with access rights to the
remote access server to remotely access your controller using remote shell (ssh). For complicated support issues, the

43

4 The Web Browser User Interface

Z-WAVEXME | # D ©17:11:08 L
ﬁ User management W
=
= Remote Access Management ~

Access your controller frem cutside the home.

Access ID: 79033

Enable Remote Access

Enable Remote Support Access

Figure 4.38: Remote Access Management

Z-WAVEXME & 0 @ 17:11:40]
ﬁ User management W
=
= Remote Access Management hd
@ Time Zone ~

Time Zonea:| EurcpeBarin

Figure 4.39: Time Zone Management

support staff may ask to activate this function. Please make sure to deactivate it after the session. The remote ssh
is only accessible to support staff with support infrastructure rights. Nevertheless, there is no good reason to keep a
port open if not needed.

4.3.3 Time Zone

The dialog shown in Figure allows managing the time zone of the controller. This ensures that all time stamps
and the time clock on the top menu bar refer correctly to the local time at the location of the server. Please note that
the time remains unchanged if you access the device from a browser from a different time zone.

4.3.4 Backup & Restore

Backup and restore can be done in two different ways:

« Time driven and automated into the Z-Way" cloud service.

« Manually triggered into filesystem of PC running the web browser.
The first block of the dialog controls the cloud backup, which can be activated or deactivated, as shown
in Figure[4.40] When activated, the controller will automatically generate a backup file and send it to the cloud server
using SSL encryption.
The files are stored on a server managed by Z-Wave.Me. This is a convenient way to keep and update a backup
file—and its free of charge. However, if you don’t trust this server or the company, just don’t use cloud backup!
The cloud backup interface allows defining the backup interval and the notification in terms of failed or successful
backup performed.
The local backup option, as shown in Figure[4.41] will generate a local backup file that needs to be stored on the local
hard drive of the PC running the web browser. The file is identical to the file stored in the cloud. From the technical
side, this is a ZIP file that can even be decompressed and audited. It will comprise XML and JSON files and images
that were uploaded before.
If the cloud backup option was chosen, the backup file needs to be downloaded to the local PC before being applied
as a restore file. Clicking on the button “Request Cloud Backup” will cause the server to generate a temporarily valid
token which is sent by mail to the mail address defined for the admin account. This email will contain an explanation

44

4 The Web Browser User Interface

z-waverme | & | B B o1n1zie -]
w User management W
= Hemote Access Management W
@ Time Zone W
& Backup & Restore ~

CloudBackup

Cloud backup is conveniently saving up to 3 backup files on our server (using S5L encryption). f you don't like to ses your backup file on our server, just deactivate this service.
Diownload of backup files require admin privilege and a valid admin email address. The current Email address on file for the admin is christian. pastz@gmail.com. To change this
please refer to the usar settings of "admin’.

& Cloud Backup active

E-Mail notification
) Do not send me log by email
® Send ma arror log only by email

) Send me arror log and nofifications by email

Manual | Daily Monthly

Hours 22 4| Minutes| 00 4 Weskdays Sunday ¥

Figure 4.40: Automated Backup into Cloud

z-wavesme | & | B M |eimizdo o

Hours 22 & | Minutes| 00 4 | Weskdays Sunday L

Local backup

The backup saves all device names, icons, apps, settings, etc. Informations about Z-Wave nodes present in the network are determined automatically on beot up and can not be
changed using a backup. Henca, afier a Factory reset all information about the network are gone regardless of any backup. Restoring a Z-wave network with all its Node Ids and
its topology from a backup file is pessible but requires special caution and knowledge. A dedicated backup/restors function - available in the Z-Weve expert User Interface - is
required for such an operation.

& Download backup to your computer

Restore

All Restore functions require a backup file available on your PC. You can request your latest backup from the cloud delivered to your email address.

O Request cloud backup

|| Arevyour sure to ovarsrite tha current configuration? Have you created a backup? Notice: A complataly resatad controller cannot be restored by this .zab-backup-file.
Please use the backup / restore functionality from the Expertll under Netwark > Controllenjvi r) instead. Activate 'Alsc restore network topology information
(phease read the user manual firstl)' during restore. (not recommendead)

oL, Upload the file

Figure 4.41: Local Back and Restore

45

4 The Web Browser User Interface

o

I-WAVEYME | # 0 ©17:13:16

ﬁ User management

= Remote Access Management
@ Time Zone

£ Bac kup & Restore

~u

rr Factory default

> £ € € < £

1 Firmware update

Update the device databass.

The current firmware version is: v2.3.5-rc4

& This will apen new window. To vpazre frmware, ciick on fab Advenced -= Firmwane and continue sccording to the istruchion.

Figure 4.42: Firmware Update Options

of the process and a unique link to an online list of backup files available. Just download the file of choice.

The real restore function always requires a file uploaded from the local file system. A checkbox ensures that the user
understands the consequences of applying a restore file.

Please note that the backup and restore function will only handle files on the controller, and not the Z-Wave network
topology stored in the Z-Wave transceiver chip.

To overwrite this content, please refer to the Z-WAvE EXPERT USER INTERFACE , as described in Chapter[7.5.1]

4.3.5 Factory default

This function resets all functions of the controller. All uploaded images will be deleted and all given names and settings
will be removed. The included Z-Wave devices will NOT be removed. For removing them from the controller, please
refer to the basic Z-Wave literature, e.g. the book “Z-Wave Essentials” as mentioned in Chapter

4.3.6 Firmware Update

The firmware update menu as shown in figure[4.42] refers to two different processes:

* (Update device database] : This button can be triggered to update the Z-Wave device database used for the inclusion
process described in Chapter[4.2.2] This update is not critical and new firmware updates will update this device
database anyway. However, for debugging purposes, it is sometimes beneficial to force a database update.

. : This option will update the whole firmware including the dialog offering this update.

Updating the firmware is a quite complex process. In the normal operation mode, all communication between user
interface and controller backend is handled using IP Port 8083. However, there are good reasons not to use this port
for the management of the firmware update:
« The update script will overwrite the same software that informs about the update as such.
« In case the update fails, or the update firmware is damaged and not working correctly, there is no way to turn
the update back since the dialog doing so (on port 8083) will not be available anymore.
This is why hitting the button will open a new user interface embedded into the current interface. Figure
[4.43)shows this new black-background user interface dedicated to the firmware update function. This user interface
is served from another webserver temporarily active on IP port 8084. Hence, it would be possible to directly access
this user interface using the

http://MYIP:8084

This user interface will remain active for about 10 minutes. This is enough time to perform the firmware update and
revert it in case of problems. After the 10 minutes, the service on 8084 is deactivated automatically.
The firmware update dialog shows the current firmware and offers update to the most recently released firmware

46

http://MYIP:8084

4 The Web Browser User Interface

Firmware update x

RaZberry Configuration Interface

General [¥ ¥ e

Firmware Update
The current firmware version is V235104

= update to latest (v2.3.4)
update to | |

Please make sure to keep your device powered during the whole firmware update process
The firmware version i complete once this dialog shows the new firmware version number.

[Update |
Changelog:
27.03.2017 w2.1.1

Home antomation backend [w2.3.1)

Fixes:
- Added Z-Wave module restart after UZB/Rafberry upgrade
- box reboot refactored
- controller function - get instarces by module name added
- Factory reset:

- add controller state check after SezDefanlt(}

- exclude 'default’ from skin urinstaller

- add rull check to storage cleanup

= mdd rntifiratinn

Figure 4.43: Firmware Update Dialog

version. For debugging or trouble shooting purposes, it is possible to load a specific firmware version. A change log
shows the changes of all the official firmware release versions.

4.3.7 App Store Access

The app store allows downloading new apps provided either by Z-Wave.Me or other independent developers. Some
of these developers may want to limit the use of their apps to a certain group of people, either because this is related
to their business model, or because the apps are beta stage or for trial only.

The token concept is a simple and efficient method to limit access. Apps that are uploaded to the app server (For more
information on how to create and upload apps, please refer to Chapter[6) can be marked with one or more tags. These
tags are simple strings and the developer can choose whatever token he wants. He can also have more than one tag
for different purposes.

In order to access apps that are tagged, the various tags need to be added to the controller using the form shown in
Figure[4.44] Tags can be added and removed. Once a tag is added, all the apps with this tag will be shown in the app
store, as described in Section [4.2.7]

4.3.8 Report Problem

The menu item, as shown in Figure[4.45] demonstrates a quick and simple way to report bugs and problems related
to this User Interface. Providing an email is optional, but please be aware that the form will transmit some meta
data such as version number of the User Interfaces or version number of the firmware. If you don’t like to share such
information, please use your personal email. Also, please don’t expect an individual answer to the bug reports. This
is not a support tool.

4.3.9 Info

The info menu item provides some version information for the user interface and the backend. This information is
usually needed for support and troubleshooting purposes only.

47

4 The Web Browser User Interface

Z-WAVEIME | & B |oirs0s

L

w' User management

= Remote Access Management
@ Time Zone

X Backup & Restore

5

s Factory default

1 Firmware update

> € € € <€ <€ (<

B App Store Access

The App Store contains apps from different sources and on different maturity kevels. On default you will only see mature and apporoved apos for download. Adding
different Tokens may open you the access to apps not shared to the public yet and apps that are in alpha or beta state. The developers will usually give you can
eccess token you can add to the list of tokens below

Add tokan +

ss8_zwickar : x _modules % _beta X _internal X

Figure 4.44: App Store Access

¥¥ Report Problem Y

O This form is dedicated to report bugs in the Ul please do not provide any response. |f you need support please consult the support forums or email
addresses provided.

Email:

Figure 4.45: Problem Reporting Form

48

5 Mobile Apps

Accessing the Smart Home from a mobile device such as a phone or an iPad has become popular. Z-Way™ offers
multiple ways to access a user interface from one of these mobile devices. Thanks to an open API, it is also possible
to design your mobile app or use third-party apps supporting Z-Way"™ .

Hence, while other vendors offer just one app per mobile platform (Android, I0S), Z-Way" allows you to choose what
you like best.

5.1 Standard mobile web browsers

The Z-WAY SMART HoME INTERFACEand the Z-WAVE EXPERT USER INTERFACE are developed as a responsive design,
meaning that the web pages will determine the screen size of your device and re-render accordingly. As a result, the
Z-WAy SMART HoME INTERFACEand the Z-WAVE EXPERT USER INTERFACE described in Chapter[7)are quite usable with
small mobile screens. Figure[5.1shows a dialog from the web browser interface on a small mobile screen.

The Z-Way SMART HoME INTERFACEWill always be the most advanced and most recent interface incorporating all new
functions and features. This means accessing the user interface on a mobile device with a standard browser makes
these functions available on the mobile device first.

The big disadvantage is that the interface is certainly slower than a native app, and the dialogs and menu items may
only be partly optimized for small screens.

Accessing the user interface from a mobile web browser is not much different than from a PC-based browser. Just
type in the IP address of the controller or use the find.zwave.me service.

5.2 Native HTML based apps

It is interesting that most apps available in the commonly used app stores are written in HTML and embedded into
a native wrapper that allows enhancing the HTMP pages with further functions. The standard Z-Way™ apps in the
iTunes and Google Play Store follow this approach. You find the apps here:

« Android: https://play.google.com/store/apps/details? id=com.app.zwave.zway_control

« 10S: https://itunes.apple.com/de/app/zway-control/id 1033129180
The apps are optimized for mobile devices and apps, e.g. to use the QR code for a fast setup. They will also cache data
better and align some other functions. There is only one drawback. If the app is used for inhouse control, such fast
access to lights, the overall design of the data handling and caching will still imply some delays. Also, the app only
allows managing one home per device since it cannot be installed twice for two different homes.

5.3 Pure Native Apps

For the Android platform only, there is a second Z-Way™ control app that is written completely in Java for very fast
access to actuators. The usage philosophy is similar to the other apps with dashboard, room view, timeline, history,
etc. Figure[5.3|gives one view of the app.
The app, named ’Z-WAy CoNTRoL’, is available on the Google Play Store:

« https://play.google.com/store/apps/details?id=de.pathec.hubapp&hl=de

5.4 Third-Party Apps

The outstanding reputation of Z-Way" as Z-Wave backend caused many third-party suppliers and developers to sup-
port Z-Way " with their frontends. The following explanations can only cover a subset of solution and user interfaces.
However, the three examples show three very typical approaches.

5.4.1 Imperihome

Imperihome is a vendor-agnostic app that is available for various mobile platforms. It supports quite a long list of
smart home devices and systems such as Z-Way" . The basic version of the app is available free of cost. The extended

49

5 Mobile Apps

& -]
@ Wohn/Ess -d) Q
Verandatir
@130 off
Schiaf 'E) ¢
Deckenlicht
0 ~0
Schiaf '9 ¢
Schrank
0
Do
Kiiche
CO2 Level
© 12:00 372 ppm
ROR -

.__ Flur
Strike lock module

© 13:59:55

Figure 5.1: Web User Interface on small mobile screen

Figure 5.2: Mobile App Icon from App Store

50

5 Mobile Apps

- FosCam9805 12

ﬁ a8 = 0155305
-]
(> |

Berlin o8
15.2°¢C 01552
0 Code device 10 o8
off On
6 Dummy 11 Ry
58%
0 Dummy 17 Ry

(o 8

Categories | Tags = (@

Figure 5.3: Native HTML based app

Chamnitz Cam
18,1
°® °0

Tubelamp

o1

! All OFf / On

Aus

Ventilator | Popp Thermostat
I Temperature
Aus 17,95c

°®

Popp Thermostat Heat

°0

Sealing Light (Living Room)

Figure 5.4: Native fast app for Android

51

5 Mobile Apps

), ImperiHome

No group Bedrooms

CAMERAS

J 1.z Corridor camera

SENSORS

/1 Child1 bedroom 20.2°C / 65%
L 1

20.8°C / 68%
714 ppm

t'ﬂ, Smoke detector

ACTUATORS

’ Bedrooms heating OFF

"I"I Heater 2 Shutdown

1
’ Night light ON

. Darante linkt

-

Figure 5.5: Imperihome App

Fibaro AP implementation

.EIE
e)

= us

MCancel | hstaled | +Add Aop

Figure 5.6: Z-Way'" app to support Fibaro Mobile App

version costs some 5 USD/EUR.

5.4.2 Fibaro

Fibaro is one of the leading Z-Wave-based smart home suppliers in Europe. They offer their own Z-Wave smart home
controller, Home Centre Lite of Home Centre 2. Fibaro is focused on design and so their mobile app is quite stylish
too.

You can use the Fibaro app, which is designed for their own Home Centre 2, to control Z-Way"™ .

Just download the Fibaro supporter app from the Z-Way™ app store. Chapter@describes how to do this. After that,
download the Fibaro mobile app from iTunes or Google Play Store, and configure accordingly.

5.4.3 openHAB

openHAB (www.openhab.org) is one example of an open source smart home control system that uses Z-Way " to
manage the Z-Wave network part. Once the connection is set up, it is possible to use one of the mobile openHAB apps
to control Z-Way™ -connected devices. For more information about this binding between Z-Way™ and openHAB,
please refer to the openHAB website.

52

5 Mobile Apps

Welcome home
.l 3:22 """'“r.-r.- .'|:-:-

BLOT. 713

Caawins

Figure 5.7: Fibaro Mobile App

5.5 Shortcuts for Android and Integration into Third party software

All access to the Z-Way" backend can be done using simple HTTP request doable from any webserver. However the
client needs to be authenticated. For more information about authentication and client access please refer to chapter
[TT)and particularly [13.1]
To access the Ul with a one HTTP command you need to have a small script on your server. A PHP version of such a
script is available at

http://www.z-wave.me/download/zcmd.php.zip

Please unzip and adapt - if needed - to your needs. We have installed the very same script at
https://service.z-wave.me/zcmd.php

Please note that this script - if not running on your own server - bears a security risk since all of your commands run

on our server. You will need to trust our server and the safety of the script. Hence we encourage you to use and adapt

the script and run in on your own webserver if you have any.

One nice application of the single-line access is placing a shortcut on the Android home screen. This allows to execute

important functions in the Smart Home with one click without even opening the app.

First, install the Android App "HTTP Request Shortcuts’ by "Waboodoo’
https://play.google.com/store/apps/details?id=ch.rmy.android.http_shortcuts

The you need two important information from Z-Way beside your login credentials:

« The name of the device: Click on the Configuration Menu of the element you want to control. Element names
look like where 83 is the Z-Wave device Id, 0 is the instance, 37 is the command
class Id (here Switch Binary).

« The command you want to execute. For switches or dimmers it is ’on’ and ’off’, for a door lock its open’ and
‘close’.

Now start the app "HTTP Shortcuts’ and add a new shortcut. Choose name, icon and description. Pick ’POST’ as
Access method and enter the url
https://service.z-wave.me/zcmd.phporthescriptonyourserver

For security reasons we strongly recommend to use HTTPS only. HTTP is not protecting your credentials. Leave
authentication and request header untouched. Using the button ’Add parameter’ add your credentials and the com-
mand:

53

http://www.z-wave.me/download/zcmd.php.zip
https://service.z-wave.me/zcmd.php
https://play.google.com/store/apps/details?id=ch.rmy.android.http_shortcuts
https://service.z-wave.me/zcmd.php or the script on your server

5 Mobile Apps
« id: boxld/login:password
« cmd: deviceld:command
Then save the settings and try to execute it by hitting the icon from the list of Shortcuts. Once everything is ok, make

a long push to the icon and choose ’Place on home screen’. On some phones you need to long push on an empty place

on the home screen, then select widgets, find "HTTP Request Shortcuts’ among the list and then select the desired
shortcut to show.

54

6 The App System: making it intelligent

Z-Way " operates on two levels: Every function of the device in the network will be shown as an element. Elements
are shown automatically but can be deactivated or hidden. All other functions are realized and managed in apps.
These apps can be grouped into four categories.

1. More elements that use services and information from the Internet or other TCP/IP-connected devices from
third parties. Examples of this include weather information taken from online weather services or the con-
trol of a SONOS music system. There are also settings for out-of-band communication to users utilizing push
notification, email, SMS, and voice output.

2. Logical connections between elements and other services. This is usually referred to as automation. It connects
element functions with each other or with timer information. Example are a time-driven control of lights,
heating, or turning on or off the light based on a motion detector.

3. Connection and integration of third-party smart home systems and technologies. One of the most commonly
known systems is Apple Homekit. Other systems are openremote.org, IFTTT, etc.

4. A big number of apps is needed to unlock special functions of physical devices (or fix-specific bugs). Examples
are the control of user codes and user accesses of a keypad or special displays of energy consumption that are
not done by Z-Way™ by default.

Some important apps are already pre-installed on Z-Way" . Most of the apps are available online on the server and
need to be downloaded before they can be used. This chapter gives some examples and recommendations for typical
apps available.

6.1 A simple Apps as starter - ’LocAL WEATHER’

Displaying the local weather inside the smart home user interface is a simple and popular task. Z-Way™ offers
several apps for this request. Already on the device you fine the app ’LocAL WEATHER’ calling data from the known
service openweather.org. The data is provided free of charge; however, an API key is needed to access the data. Visit
www.openweather.org and register as a user to access your APl key. After that, install the weather app ’LocAL
WEATHER’ (see Figure[6.1) from the local app repository. Figure[6.2]shows the configuration dialog:

Rename the app to your own needs

Pick the name of the city

Pick the country of this city (agreed this is foolish, but this is how openweather accepts data)

Choose between Celsius and Fahrenheit

5. Insert the APl key received from openweather.org

e o e

Once activated, a new element is shown on the element view displaying the temperature and the weather situation.
Clicking on the small triangle on the right-hand side opens a small window with more weather information such as
air pressure, wind speed, relative humidity. The data is updated hourly.

It is possible to display certain values as single element in the element view. This can then be used for automation.
Please note, that both the IF and the THEN side of automation like ’IF->THEN’ must always refer to active elements.
for more information about the ’IF->THEN’ app please refer to Chapter|6.2.2]

An interesting app is 'VIRTUAL RAIN SENsOR’. This app creates an app indicating if it was raining on the location.
This app sits on top of a weather app and uses their functions and setup. This example shows that certain apps can
depend on other apps to be installed first. This concept is known from PC software where certain applications require
certain tools or libraries installed first.

Sl Local Weather »
[+

Figure 6.1: The Open Weather app in the App Repository

55

6 The App System: making it intelligent

55 Local Weather
The Local Weather app creates an element showing the local weather data as provided by the Intemet service https:/openweathammap.crg/. The slement
is showing the local temperature but clicking on the created elsmant will reveal humidity, wind speed, air pressure as well

Setting
« Pick your country and your city. You may want to check city names with http://openweathermap.org/

= Ext. Davices/Services
& Z-Wave Me

@101

4 Active

MName

Local Waathar

Gity

oo)

© This field is not optional

Gountry

(s)

© This field is not optional
Units
o sp

°F

API-Key

API-Key]

© This field is not optional

= Gancel

Figure 6.2: The Open Weather app configuration

Scene »

Figure 6.3: The Scene App

6.2 Smart Home Logic

Logic or automation is the core of the Smart Home. It allows doing things automatically depending on certain condi-
tions.

6.2.1 Scene

The most basic step to simplify life is to group multiple actions into one action. There is no need to have a smart
home controller in the home to do this. Even classical electrical wiring allows switching on two lights with one
switch. However, smart home allows creating much larger actions just triggered with one (virtual or real) button. The
tool for this is called ’SceNE’ and the app is shown in Figure|[6.3]

The configuration of the scene app is quite straightforward. All devices to be controlled with the “one button” need
to be identified and their desired switching status defined.

The scene itself becomes a virtual device, which is why it is also possible to create a hierarchy of scenes and to let one
scene switch the other scene.

Once stored, there is a new element with the name of the scene as shown in Figure[6.4] There is only one button to
turn on the scene. A scene can never be turned off but only replaced by a different scene. The reason for this is that
it is not reasonable to turn back to the previous state, since individual devices of the scene may have been operated
in the meantime. The scene element shows the time stamp when this scene was activated the last time. The event
history shows all the events (activations) the scene, much like how it is done on any other Z-Way" actuator.

An enhancement for the scene app is the ’SCHEDULED SCENE’ or ’SCHEDULE’, as shown in Figure This app
combines the scene function with a simple weekly calendar that allows executing the scene at a special time per day.

56

6 The App System: making it intelligent

&

MyScene

® 14:52 on

Figure 6.4: The Scene Element

Schedule »

+

Figure 6.5: Schedule - an scheduled Scene

6.2.2 If -> Then

The most basic relationship of automation is the If->Then relationship

Some examples
IF button 2 on the remote control is pressed, THEN the ceiling lamp will turn on. IF temperature sensor
goes above 22°C', — THEN turn down the heating AND open the window.

In order to accomplish this kind of IF— THEN relationship the following requirements need to be met:

« The actor device needs to be identified and able to perform the desired task.

« The sensor or controller needs to be able to generate an event that causes the action.

« The sensor or controller needs to know which actor to control and in which way in case of an event.
The first requirement is quite obvious. If the ceiling light—to stay in the first example—is turned on, the ceiling light
needs to be controlled by a wireless device that can be turned on and off wirelessly. While this sounds straightforward,
there are plenty of examples where the actor is not able to fulfill the desired task, e.g. a dimming device cannot change
the color of an LED light.
The second requirement is also obvious. There must be a defined event that causes an action. In case a button of a
controller is involved, this is quite easy, but for sensors that measure constant values, this may become a challenge.
Binary sensors such as door sensors or motion detectors generate an event whenever their binary state changed from
on (window open) to off (window closed). For a motion detector, it gets more complicated. The motion part, typically
resulting in an ON event is easy to detect but how about the OFF event?
How can a motion detector be sure that there is no person in the room anymore? Most motion detectors allow setting
a certain timeout value and generate an OFF event when the time has run out. It is also conceivable to do nothing after
a given time. Even then, the motion detector needs to know the minimum time between two events to be generated.
Otherwise, it will constantly generate events, resulting in network traffic when a person moves in the room.
Timings and settings are typical configuration values of a motion detector and often can be changed either locally
using buttons and/or wirelessly using the Configuration command class described within the Z-WAvVE EXPERT
UseR INTERFACE in Chapter[7]
Sensors that measure an analog value such as temperature, CO2 level, humidity, etc. cannot generate an event from
just measuring the value. In case the device is used to start an IF (...) — THEN (...) association action, it needs to
know certain boundaries of the measured values and what to do if the measured value reaches the boundary value
set. The boundary values that are used to generate events are called Trigger Levels.
The ’IF->THEN’ app, as shown in Figure allows implementing the third condition, the relationship between event

If -> Then »

Figure 6.6: If->Then App

57

6 The App System: making it intelligent

If -> Then
Exampies for this are door that s opencd the
0 ana- v Stats-1

sssssss

nnnnnnnnn

Then

00 A v

LIy sav |

Figure 6.7: If->Then App Configuration Dialog

and action.
Figure[6.7]shows the configuration interface of the ’IF->THEN’ app. The first step is to device the event. First, select
the device type of the relevant device. This will only shorten the list of devices (elements) to choose next. The device
types are
1. Binary Sensor: These are typically motion detectors, smoke detectors, door sensors, but also alarm conditions
of the device, e.g. power loss.

2. Binary Switch: These are all switches just knowing the state on and off.

3. Multilevel (Analog) Sensors: These are sensors measuring a certain physical value, e.g. temperature, CO2 level.

4. Multilevel Switches: These are dimmers and motor controls, e.g. for blinds or jalousies.

5. Scene Controller: These are special devices like remote control issuing special scene activation commands. The
specific scene control number must be known.

6. Switch Control (On/Off/Level): These are controlling devices that report a status of the buttons, e.g. on or off.

7. Switch Control / Scene: These are controlling devices that only know one state. Typically, these are buttons that
are pressed. The “un-press” is not monitored.

Finally, choose the event that will trigger the ’IF->THEN’ rule. For devices with a defined number of states (binary
sensor, discrete sensor, binary switch, etc.), reaching this state is the trigger condition. Here it is enough to just pick
the state (e.g. off). For analog sensors, it must be defined if the event is reached when the measured value is above,
equal, or below a certain trigger value.
Please note that some battery-operated sensors update their value only infrequently. The temperature on a certain
spot may rise. Unless the sensor does not transmit this new value, the ’IF->THEN’ rule will not kick in.
The second part of the configuration is defining the action. The device and action selection is similar to the IF part.
Choose the device type first, then the specific device (element), and finally the action. The selection of device types
differs from the IF section for obvious reasons:

1. Binary Switch: These are all switches just knowing the state on and off.
Color Switch: This allows changing the color on multicolor lights.
Door Locks:
Multilevel Switches: These are dimmers and motor controls, e.g. for blinds or jalousies.
Scene: A scene as described in Section [6.2.1]
6. Thermostat: This allows defining the setpoint of a thermostat.

WD

Once saved, the configuration becomes active.

One special function of computers in general, and the ’IF->THEN’ app in particular, is that it does not necessarily
know what the user thinks but what he configures.

Let us take an example: If the relationship is that—IF the door sensor is open, THEN turn on the ceiling lamp—this
means that the ceiling lamp goes on when the door is opened. When the door is closed, the ceiling lamp will not go off
because this was not written. If the ceiling lamp goes off, a second instance of the If->Then relationship is needed. In
case two devices really run synchronously with triggers on and triggers off, another app can realize this step instead
of having two times the If->Then app. This app is called is called ’AssociATiON.

58

6 The App System: making it intelligent

Association »
+
Figure 6.8: Association App
Logical Rule »
+ | O

Figure 6.9: Logical Rule

6.2.3 Logical Rule: If->Then on steroids

’IF->THEN’ can connect one event with multiple actions including triggering a scene with even more action. However,
it is always one single event. For example, the night light will be turned on by a motion detector but only in the
evening and not during the day. This means that different input variables need to be combined to generate the final
scene-triggering event. The way this combination is achieved is called binary logic or Boolean logic, and the app
implementing this is called ’LoGicAL RULE’ as shown in Figure[6.9] Boolean logic has three basic ways to combine
variables:

« AND

« OR

« NOT
With these three elements, even complex relationships between variables can be described. In case of the evening
light triggered by a motion detector, the definition looks quite simple:

IF (it is evening) AND (Motion detector triggers) — THEN (activate scene)

It is possible to connect more than two input variables using Boolean logic. However, some constrains need to be
considered.

« The logical combinations, namely AND and OR always combine two variables. If more than two variables are
combined, there is a need to set braces: The statement “A and B or C” has two meanings: (1) always A and then
either B or C, (2) Either a combination of A and B, or just C.

« There is a difference between status value and events. A scene can only be activated by one single event, but
this event can be combined with a list of status value. The scene is triggered only if the event happens and
all the other status variables are in the desired status. In case a scene depends on two events, then the trigger
condition is only true if both events happen at the same moment, which is quite unlikely.

A combination of variables therefore always has one single event but is not a limited list of other status values.
Status values are “after 17.00” (not right at 17.00, this is an event), a certain switching state of a switch (not the
change of the switching status, this is an event).
Figure[6.10]shows the configuration of the LoGicAL RULE.” The first section allows defining certain conditions (status
or events) and defines if all of them (AND) or just one of them (OR) will trigger the rule.
A condition can also be the result of another combination of statuses and events. This is called “nested condition,”
which allows building a hierarchy of conditions and combining them in any possible way.
The action section is already known from ’lF->THEN’ of from scenes. The third section, “How the Logical Rule is
triggered,” allows some runtime optimization. By default, any changes in the devices mentioned in the rule will have
the chance to trigger the entire rule. For very large rules, this may consume a lot of power. That’s why it is possible
to limit the number of devices that can trigger the rule. This saves computing power.

6.2.4 Tips and Tricks

Besides the apps ’SCENE, ’IF->THEN, ’LOGICAL RULE, and ’SCHEDULE, there are a number of other apps in the
app store for special automation functions. One little utility is worth mentioning—the dummy device shown in Figure
.11l

59

6 The App System: making it intelligent

What triggers the Logical Rule

Conditions

00 A v

Figure 6.10: Logical Rule

(y Dummy Device »
L '
+

a

Figure 6.11: Dummy Device

The dummy device creates a virtual switch or dimmer that is shown as an element but does not have any physical
function. Nevertheless, it is a valid source of events and status information as well as a valid device to be controlled
by scenes. Sometimes, this is helpful to visualize certain situations in the home.

6.3 The big apps

While automation apps are more or less a toolbox to implement original ideas of certain automation and dependencies,
the app store also offers complex apps for certain typical functions in the smart home that are already finished and
need configuration only.

6.3.1 Leakage Protection

The leakage protection collects all information from leakage sensors in the smart home and generates one single
element to visualize the status of the home. Additionally, the alarm condition is communicated out-of-band. The app
needs to be downloaded from the online server, as shown in Figure

The configuration allows picking all flood sensors in the home to trigger an alarm. In case of an alarm, certain actions
can be triggered. The most obvious action would be to turn off the water supply using a Water Shut Off valve.
Additionally, it is possible to send out a notification. A drop-down list allows picking the desired notifier (email, push,
SMS, whatever is installed) and define the message to send.

Leakage Protection
p) | X 182x

X

Figure 6.12: Leakage Protection App

60

6 The App System: making it intelligent

o
6 Leakage Protection

Figure 6.13: Leakage Protection element - armed

‘ Leakage Protection

Figure 6.14: Leakage Protection element- alarm

~OK

il

~ALERT

The app creates an element to control the leakage alarm. The element allows arming and disarming the system. See
Figure[6.13] for the element when in the armed status. In case one of the flood detectors detects a leakage, the app
will go into the alarm state:

« The element shows the alarm state (Figure[6.14).

« All actions defined in the configuration dialog will be executed.

« If configured, a notification message is sent using the notifier selected.

« The little triangle on the element allows checking which sensor triggered the alarm.
In case the alarm condition disappears (no water anymore), the alarm condition is revoked, but the element will show
that there was an alarm event. This indication is shown in Figure[6.15]

6.3.2 Fire Protection

The fire protection collects all information from smoke detectors in the smart home and generates one single element
to visualize the status of the home. Additionally, the alarm condition is communicated out-of-band. The app needs
to be downloaded from the online server, as shown in Figurem
The configuration allows picking all smoke detectors in the home to trigger an alarm. In case of an alarm, certain
actions can be triggered. The most obvious action would be to turn on all lights and open the door. Additionally, it is
possible to send out a notification. A drop-down list allows picking the desired notifier (email, push, SMS, whatever
is installed) and defines the message to send.
The app creates an element to control the fire alarm. The element allows arming and disarming the system. See Figure
[6-17) for the element when in arm status. In case one of the smoke detectors detects a leakage, the app will go into
the alarm state:

+ The element shows the alarm state.

« All actions defined in the configuration dialog will be executed.

« If configured, a notification message is sent using the notifier selected.

« The little triangle on the element allows checking which sensor triggered the alarm.
In case the alarm condition disappears (no water anymore), it is revoked, but the element will nevertheless show that

there was an alarm event.
o Leakage Protection

Figure 6.15: Leakage Protection element- wait for clear

il

~OK!

61

6 The App System: making it intelligent

Fire Protection

| & 451x

&

Figure 6.16: Leakage Protection App

&

) Fire Protection
¢/

| ~ OK

Figure 6.17: Fire Protection element - armed

Security-Module
Trir | & S64x

&

Figure 6.18: Security System

62

6 The App System: making it intelligent
e &

SecurityModule 14

Figure 6.19: Security System im disarm status

&

SecurityModule 14

Figure 6.20: Security System im arm status

6.3.3 Burglar Alarm System

Security is one of the most frequently used functions of the smart home. The smart home can replace the tradi-
tional alarm system and implement the function using dedicated devices or reusing other devices such as e.g. motion
detectors that were primarily installed for different reasons.

The app ’SEcCURITY MODULE’ implements a complete alarm system with all the functions known from conventional
alarm systems. The app must be downloaded from the online server, as shown in Figure[6.8]

The configuration interface allows managing different lists of devices:

1. Devices that can trigger the alarm: These are all the sensors that will indicate a burglar in the home. These
include door sensors, motion detectors, tamper switches, glass break sensors, etc. Per device the app allows
selecting what sensor state will trigger the action.

2. Devices that can arm/disarm the system and clear alarms: Of course, it is possible to arm/disarm and clear
alarms using the user interface. However, most alarm systems are armed/disarmed using buttons, keypads, or
even smart home scenes (e.g. “I am leaving home” or “I am sleeping”). For example, a simple switch can be used
to arm or disarm the alarm system. This is not safe but doable. Per device an arm, a disarm, and an alarm clear
status or event can be defined.

3. List of actions on alarm. This can be turning on lights, starting SONOS, switching a siren, and of course trig-
gering a notification of choice.

4. List of “arm” status indicators: Once the alarm system is armed, there will be some visible indication, besides
the element on the user interface, that the house is armed. This could be some red lighting or some slow glowing
LED light.

5. List of “disarm” status indicators: Similarly, there can be devices that indicate that the alarm system is disarmed,
e.g. with a green light.

6. List of actions when the alarm is cleared:

The last section of the configuration allows defining time-driven arming and disarming of the system.

The security app creates an element to control and manage the alarm system. The element allows arming and dis-
arming. Figure[6.19shows the alarm system in the disarm state. Once armed, the icon turns blue for some seconds,
indicating that the alarm is turned on but the alarm system is not yet fully armed. This is important as it allows users
to leave the home after they have armed the system. Any sensor in the list of triggering devices will put the system
in alarm state once triggered. This results in

« The element shows the alarm state with the red icon, as shown in Figure [6.21]

« All actions defined in the configuration dialog will be executed.

iR e

SecurityModule 15

Figure 6.21: Security System in alarm status

63

6 The App System: making it intelligent

Climate Control
& 1010x

<

Figure 6.22: Climate Control App

s &
@ Climate Control
¥ Rooms

Figure 6.23: Climate Control App Element

« If configured, a notification message is sent using the selected notifier.

« The little triangle on the element allows checking which sensor triggered the alarm.
Even if the triggering sensor goes back into the non-triggering state, the alarm conditions remain active. The alarm
must be cleared by one of the devices configured or clicking on the alarm clear button (two arrows). The system
then goes back into the arm state, as shown in Figure[6.20] The clock icon will activate the time-driven arming and
disarming of the alarm system.

6.3.4 Climate Control

Saving energy by having intelligent heating and climate control is one of the core values of the smart home. Of course,
it is possible to directly control thermostats, but the *CLIMATE CoNTRoL’ feature manages the whole home and offers
a lot of options.

The app must be installed from the app store as shown in Figure[6.22]

The climate app operates on various levels. First, there is a time-driven weekly schedule per room that defines the
temperature in that room. The time-driven schedule should be the normal operation mode of the climate control
feature. A second layer is the manual overwrite of the temperature. This overwrite can be done on a room layer as
well as on the whole home layer.

The first two values are of general nature. The setback temperature is the temperature difference between the comfort
temperature in a room and the energy-saving setback temperature in this room. Since different rooms may have
different comfort temperatures, the energy-saving temperature also differs but always by the same delta. In case of
doubt, please insert 4 Kelvin, which is a commonly accepted value.

The automation reset time defines when the normal automated heating schedule is used again after a manual over-
write of this schedule. The preset 2 hours is a good value.

Now there is a list of rooms. Just add your rooms you want to have the climate control feature. Per room you can
define a temperature sensor that shows the temperature in this room in the climate control user interface. There is
no further function of this sensor than showing the value in a convenient way. Please note that the dropdown list
will only show temperature sensors that are assigned to this room. The comfort temperature is the room-specific
temperature. Usually it is higher in bathrooms than in sleeping rooms. Your individual preference matters here.

The last section of the configuration dialog is the heating schedule. It allows setting a temperature at certain time
slots on certain days per week for certain rooms.

As shown in Figure[6.23] the app generates a special element. It allows running the climate control for the whole home
in three basic modes:

. The heating in the home is turned off. This will overwrite all schedules and all settings in every room.

64

6 The App System: making it intelligent

kel Kitchen 278°C = 22°C | Time-driven
s

Figure 6.24: Climate Control App Element - room view

E-mail ME »
e + x

Figure 6.25: Email App

. The heating in the whole home is in the energy-saving mode. This will overwrite all schedules and all
settings per room.

. No home-wide overwrite. The room-specific settings apply.
The little triangle on the right-hand side allows opening the room view as shown in Figure[6.24] Here, it is possible
to see the actual temperature per room plus the current desired temperature. A dropdown list allows choosing the
heating mode for the specific room:

+ Frost Protection: The room is in the frost protection state (around 8 degrees C).

« Energy Save: The room is in the energy-saving state. This is the comfort temperature minus the setback

temperature difference defined in the configuration dialog.
« Comfort: The room is in comfort temperature as defined in the configuration dialog.
« Time driven: The heating schedule as defined in the configuration dialog applies.

6.4 Out-of-band notifications

All events in the smart home are shown in the user interface, or they can be indicated using devices inside the home.
However, people do not always monitor the user interface. Hence, there are the so-called out-of-band notification
options to reach the user in such a case:

« Email

« SMS

« Push notifications right on the home screen of the mobile phone

« voice call
Z-Way" supports various ways of out-of-band communication. For every communication channel, multiple apps
from different providers may exist to realize the same function. However, all these notifiers work in the same manner:

« They establish an out-of-band communication channel.

« They need to be configured according to the user’s preferences.

«+ They accept messages from other apps and forward them as configured.

+ They create an element with a push button to send a simple test message.
Some out-of-band notifiers make it possible to gather and filter events from the timeline and forward them. This must
be configured in the configuration dialog.

6.4.1 Push Notifications

Push notifications are delivered to a mobile phone. As soon as one of the native Z-Way"" apps is installed on the
mobile phone, the push notification option is automatically enabled. Push notifications allow gathering events and
forwarding them automatically. This can be configured in the app ’MoBILE PHONE SuPPORT, which is already
running in the system. Please go to app management to open the configuration dialog.

’MoBILE PHONE SuPPORT’ can handle multiple mobile phones in parallel. Every mobile phone connected will create
a new element on the element view.

6.4.2 Email ME

The email app, as shown in Figure [6.25] allows sending emails to addresses that are already assigned to a user. To
prevent spamming, it is not possible to send mails to mail addresses not assigned. Furthermore, there is a mail quota
to prevent misuse of the service to annoy people.

65

6 The App System: making it intelligent

Apple HomeKit Gate

iy | & 2382x

L

Figure 6.26: Apple Homekit Integration

Chart Intchart.com
7 | & 512x

<

Figure 6.27: Intchart.com Integration

Every instance of ’EMAIL ME’ has its own email target address and creates its own element in the element view.
This element can be used as any normal actuator in the Z-Way™ system. It can act as an actuator for the If->Then
relations or be a part of a scene, etc.

6.4.3 Other notifiers

Besides the two standard notifiers for push notifications and email, the app store has plenty of other notification apps
from third-party developers. Just check out what works for you.

6.5 Useful tools and utilities

The app store is a gold mine of cool applications. This manual can only mention a few of the more popular ones. Of
course, you can check out the display of apps according to popularity, etc.

6.5.1 Apple HomeKit

As shown in Figure [6.26] the Apple Home Kit App, provided by a third-party programmer named Andreas Freud,
connects Z-Way " with Apple’s HomekitWorld. Once installed, the Z-Way"™ controller is shown to Apple as a Homekit
bridge device. Please be aware that this app is maintained by a third-party developer and the existence of the apps is
certainly not in the main interest of Apple.

66

6 The App System: making it intelligent

Astronomy
& 1036x

<

Figure 6.28: Astronomy App

6.5.2 Intchart.com

This app (Figure [6.27) adds a little icon to the selected device. Clicking on this icon opens a window with a chart
showing its history. To use this app, you have to be registered at www.intchart.com. Note that if you change the
settings below, the chart can be reset, but the previous chart will still be visible on intchart.com.
The settings are as follows:

« First, register at www.intchart.com.

« Below that, select the devices to track.

« Indicate if they have to be on the same chart.

« Indicate if you want to have a difference between values (for energy consumption, etc.).

« Choose the poll period.

« Paste the APl user ID and API key from your account: www.intchart.com.

6.5.3 Astronomy App

This app (Figure[6.28) from Maros Kollar calculates the position of the sun above the horizon for the given location.
The module provides various metrics for other automation modules like sun altitude and azimuth, and emits events
when the sun reaches certain positions. This module can be used to control light scenes or shading based on the solar
position.

Check github.com/maros/Zway-Astronomy for detailed documentation.

6.5.4 Alexa Integration

This app in Figure integrates Z-Way ' with the Amazon Alexa Voice Control system. Once installed, you need to
activate the “skill” in the Alexa user interface before using.

6.5.5 Philips Hue Integration

HUE is a new way to use your Philips Hue SmartHome solutions. Use this app (Figure [6.30) as a remote to switch
colors, turn up the brightness, and quickly toggle between lights on and off. For the moment, you have to create your
credential manually.
Installation instructions:

« Go to http://YourBridgelpAddress/debug/clip.html

« Enter {devicetype:SmartHome#RasberryPi Zway} in MessageBody part.

« Go and press the button on the bridge.

« Press the POST button on clip.html page and you should get a success response.

« Congratulations you have just created an authorized user (like: 1028 d66426293e821ecfd9ef1a0731df), which

we’ll use from now on.

« Fill your key in the Hue app!
To create your own key, see more details on:

« www.developers.meethue.com/documentation/getting-started

67

6 The App System: making it intelligent

Alexa
17 | & 524x

<

Figure 6.29: Amazon Alex Integration

OHILIPS

Philips Hue
Wy | <& 358x

4

Figure 6.30: Philips Hue Integration

« https://github.com/timauton/Hue

6.6 For Developers

Apps for developers require a certain amount of programming skills and partly require knowledge about the Z-Way™
data model. Please refer to Chapter[T1]for details.
Nevertheless, the app "HTTP’ device allows adding certain functions without deep software knowledge. The "HTTP’
device generates a sensor or an actor depending on information obtained by just accessing a website using HTTP.
One example will demonstrate this. The goal is to make an element that shows the current USD/EUR exchange rate.
The website

http://api.fixer.io/
offers this data free of charge. Even more conveniently, the URL

http://api.fixer.io/latest
delivers information in a machine-readable JSON format (you can use the URL in a standard web browser to have a
look at the structure.)

@ HTTP Device »
+

Figure 6.31: HTTP device

68

http://api.fixer.io/
http://api.fixer.io/latest

6 The App System: making it intelligent

Active

Mame

ExchangeRate

sensorhultilevel -

lcon

energy 3

URL to get value

api ficeriofatest

Inline Javascript to parse incoming data to number

$5.rates USD

© Can be empty to use parseFloat() function. Example: $8.split(':)[1] or parselnt($$, 16) or $5.data.metrics.level or parseFloat(3$.findOne('/A/B[C="123")/Ditext(")

Interval in seconds between pelling requests
60

© Empty or 0 to dizable periodical requests (explicit update command will still initiate request process)

Sensor scale

usD

HTTF Method
GET ¥

Figure 6.32: HTTP device - Configuration dialog for currency exchange “sensor”

o

ExchangeRate

© 11:08 113.9usp

Figure 6.33: Currency Exchange Element

In the http device configuration, a multilevel sensor is chosen, since only values have to be shown and they are not
only 0 and 1. Then the URL api.fixer.io is provided (attention, without http!). This will now call the whole J]SON data
set. For the element, the right value needs to be extracted. Here some JavaScript knowledge is needed to understand
the command

Finally, the refresh rate is defined and a nice name given. The other form elements are not needed here. After saving
the configuration, the new element is visible. A little optimization is to show the cent value by changing the JavaScript
into

The sensor based on the exchange rate can now be used like any other analog sensor. Setting a trigger on certain
exchange rates may be used to activate a special scene. Indeed, this is more for day traders on EUR/USD exchange,
but may still be cool.

69

7 The Z-Wave Expert User Interface

The Z-WAVE ExPERT USER INTERFACE is designed for installers, technically savvy people, and other users that know
how to build and maintain a Z-Wave-based wireless network. Hence, it uses some Z-Wave specific-language and
offers detailed insight into the work and data structure of the Z-Wave network. It allows users to:

+ Add (include) and remove (exclude) Z-Wave devices and manage the network.

« Configure Z-Wave devices.

« Operate Z-Wave devices.

+ Manage Associations between wireless devices.

« Access all data generated by the devices and perform all kind of functions and actions to the device.

+ Look behind the scene into the data structures, routing mechanisms, and timings of the Z-Wave control stack.

This is particularly useful for debugging and software development.

The Z-WAVE EXPERT USER INTERFACE does not provide any access to a higher order business logic and automation.
Please refer to the Z-WAy SMART HOME INTERFACEfor these functions. The user interface offers a home screen and five
top menu items:

. : Access to functions of the wireless devices included in the network

. : Access to information about devices

« [Configuration: Configure the devices after inclusion if needed

. : Add and remove devices and manage the network

. : Allows debugging the wireless network (Please note that this mean item is only shown and its corre-

sponding functions are unlocked in the transceivers firmware

Besides the menu items, there is a configuration setting (wheel icon), a time indicator showing the time at the time
zone of the gateway and a job queue indicator. Clicking on this job queue indicator opens a new tab displaying the
job queue of Z-Way" . Please refer to Chapterfor more information about the job queue.
All values shown in the Z-WAVE EXPERT USER INTERFACE are assigned to a time stamp indicating when the value of
status information was received from the wireless network. A red color of the time stamp indicates that the update
request from the controller to the device for this value is pending.

7.1 Home Screen

The home screen shown in Figure[7.1] offers some high level of information about the software and a notepad where
the user or installer can leave important information for future use.
The section ’Network Information’ box offers some statistics about the number of devices in the network and how
many of them are mains or battery-operated. The network health box will list devices that have problems:

« Low battery.

« Incomplete interview.

+ Device failed.

« Inconsistencies on Association settings.
Clicking on the statement will lead to a help page explaining the problems and giving guidance for remediation.
The last infobox will contain information about devices that were removed using the device reset function. In this
case, the device will leave the network but informing the controller. There is no exclusion process applied.

7.2 Control

The tab allows operating the various types of device and shows the reported values in case of sensors or
meters. In case the control options offered here are not sufficient, please refer to [Configuration >> Expert Command] for a
full set of functions supported by the device.

7.2.1 Switch

The switch dialog shown in Figure[7.2]lists all devices of the network supporting switching, dimmer, or motor control
capabilities. The device name and Z-Wave ID, as well a the current status of the switch, are given and the time of the
last status update. The button forces an immediate update of the switch (if mains powered device). A ’Switch

70

7 The Z-Wave Expert User Interface

PLUS

Thiz complete Static Z-Wave Plus Controller is certified under No ZC10-
14110004 in November 2014, Cerntification includes both the Z-Wave
Gontroller stack and this Expert User Interface.

The controller supports all certified Z-Wave devices in the market, namely
those listed in the device data base http://pepperi .net/zwavedb/.

For these devices the controller will use some meta data such as image or
configuration option. However it is also possible to eentral Z-Wave
compatible devices not listed in this database. Please refer to the device
manual for configuration and usage information.

You can download the full users manual from razberry.z-wave.me

= Notes

s

¥ Z-Wave Network

zway

@ Network Information (42 devices present)

21 devices are mains powered
18 devices are battery powered

3 devices are FLIRS

Network Health

(#11) Keller Temp
- Has low battery.

(#12) KU Decke
- Removed assoclated devices.

(#30) Regenmelder
- Has low battery.

(452) PIRWZ
- Has low battery.

@ Device reset locally

No device reset |ocally

Figure 7.1: Sceenshot of the Expert User Interface Home Screen

%T

Switch
Device name Lavel Date » Switch all O Update all e s
12 KU Decke Off 12:15 Lf‘,e O Update
14 SL Decke off s O Update) Ful 0 | — “
U
36 Gefriertrune On 12115 L‘o‘" O Update | |
—
55 Rauchmelder OG Off 1214 O Update
S8 Asotec Smart Switch & 12:14 a o o
[O Update | - O Ful
83 [TChristian on 12014 O Update | |
s
47 Swiid Cord Switch off 12014 L‘e‘" [e] Update

Figure 7.2: Control Interface for Switches, Dimmers and Motor Controls

71

7 The Z-Wave Expert User Interface

’g

Sensor data

Device name Device type Level Scale Date O Update all
3 WO Stehlampe Electric 0 W 12:16 O Update
83 FIA Christian General Puroose alarm Idle 12:18 O Update
53 PIR Ghristian General purpose Idle 12:16 O Update
53 PIA Christian Temnperature 257 °C 12:18 O Update
B3 ITChristian Power 421 W 12:16 O Update
4z Christian Temperature 2488 °C 12:14 O Update
a5 Hauselaktro Electric 315748 W 12:13 O Update
51 PIR FLUR Luminiscence 75 Lux 12:09 O Update
19 Carport Hurnigity 8 % 12:04 O Update
13 Carport Temperature 26 °C 12:04 O Update
19 Carport Luminiscence 1000 Lux 12:04 O Update

Figure 7.3: Control Interface for Sensors

%T

Meters

Device name Device type Level Scale Date » © Update al
58 Aeotec Smart Switch & Electric 0 kWh 12:00 O Update 2 Resat
B3 ITChristian Electric 4481 KWh 12:00 O Update £ Resat
22 Waschmaschine Electric 0 kWh 12:00 O Update 2 Resat
B3 Gaszaehler Gas 2151.68 Qubic meter 11:089 O Update
353 Hauselektro Electric 1401.04 KWh 11:01 O Update 2 Reset
23 WO Stehlampe Electric 0.2 KWh 11:00 O Upgate 2 Resat
34 Windsensor Electric 3350 Pulse Count 09:02

O Update | £ Reset

Figure 7.4: Control Interface for Meters

All’ Icon shows whether or not the specific device will react to a or command. A green triangle indicates
that the device will react to the command shown. All actuators can be switched on or off. Dimmer and motors controls
can be operated using a slider. For dimmer, there is a button and . turns the dimmer always to 100 %,
diming value while (0n) turns to the last dimming state before the dimmer was turned off. Clicking on the table heads
reorders the table view of the data.

7.2.2 Sensors

The sensor dialog shown in Figure[7.3|lists all devices of the network providing sensor information. Device name and
ID, the type of the sensor, the actual sensor value and the sensor scale is listed. The date/time column indicates when
the given sensor value was received. It’s possible to call for a sensor update but bear in mind that battery-operated
device will only respond after the next wakeup.

7.2.3 Meters

The meter dialog shown in Figure [7.4] lists all devices of the network providing (accumulating) meter information.
Device name and id, the type of the meter, the actual meter value and the meter scale is listed. The date/time column

72

7 The Z-Wave Expert User Interface

Thermostat i
|

Davice name Temperatura Date -

42 Christian 21°C 12:14 - o——

42 Chrigtian 21°C 12:14 - | o o—

& KU Temp 22°C 11.07.2015 Heat -+ —

& KU Temp 22°C 11.07.2015 Heat = | + —

Figure 7.5: Control Interface for Thermostats

Locks
Davice name Status Date -
I Haustlr Closed 12:01 O Update a -

Figure 7.6: Control Interface for Locks

indicates when the given sensor value was received. It’s possible to call for a meter update but bear in mind that
battery-operated device will only respond after the next wakeup. Clicking on the table heads reorders the table view

of the data. A button is shown for device supporting this function.

7.2.4 Thermostats

The thermostat dialog shown in Figure[7.5] lists all thermostat devices of the network. Device name and ID and the
current set point temperature is shown. The date/time column indicates when the given set point temperature was
transferred to the device. The set point temperature can be changed using the :] or (] buttons or the slider. Clicking
on the table heads reorders the table view of the data.

Some thermostats may offer different modes such as heating, cooling, off, etc. For these devices, a drop-down list
shows all modes available. In this case, the setpoint is only valid for the mode selected.

7.2.5 Locks

The door lock dialog shown in Figure[7.6lists all door lock devices of the network. Device name and ID, the current
status of the lock, and the last time of the change of the status are listed. The lock can be opened or closed. Clicking
on the table heads reorders the table view of the data.

7.2.6 Notifications

The notification dialog shown in Figure [7.7] lists all notification devices. Notification devices act like binary sensors,
albeit offering some more capabilities. Per notification device multiple events can be reported. The notification device
also allows deactivating the notification for certain events. Please note that not all devices make use of these functions.

7.3 Device

The menu gives access to overview pages with more detailed information about the devices in the network and
their actual status.

7.3.1 Status

This dialog in Figure [7.8 shows the actual network status of all devices. All devices are listed by their node ID and
name. The date/time indicates the time of the last successful communications between the controller and this device

7 The Z-Wave Expert User Interface

%T

Notifications

#

i

57

57

19

51

17

Device name

Raumtir G&

Haustir

BatteryDevice 57

BatteryDevice 57

FIR Christian

Carport

FIR FLUR

Werandatdr G5

Motification

Access Control

Access Control

Heat

Burglar

Burglar

Burglar

Access Control

Event

Window/door is closed

unKknown

Motien detected

Window/door is open

Date »
12:15

12:01

1132

1132

11:30

10:50

10:29

01.06.2017

O Update all

O Update

O Update

O Update

O Update

O Update

O Update

O Update

O Update

wfufSllulalufslak

Figure 7.7: Control Interface for Notification Devices

‘

Status

Device name
1 Z-Way

3 CP Decke

5 KU Co2

[KU Temp

[CP Jal Control
8 CP Jal

1 Keller Temp
12 KU Decke

13 CP Fenster
14 5L Decke

15 SL Schrank
16 SL Jal

Type Sleeping

o

¥

&

- @ 11:51 —12:51

B

@ 0717 — 1357

-

@O717 — 1117

A R S W WL VI SR D S W WA

Figure 7.8: Device status overview

74

Date
07:17
1226

a7y

11:81
a7y
12:26

a7y
12:26

12:26

12:26

12:26

12:26

oo/ /0 00

7 The Z-Wave Expert User Interface

£ Device
Type info
NWI& Z-Wave Z-Wave Device Firmware
Device name Security EF Plus Version Vendor Product Version Device type Key granted
1 Z-Way v 4 <+ 6.71.01 RaZberry by Z-Wave.Me 0.00 Static PC
& Controller
2 Device 2 v + 6.51.02 Everspring Z-Wave On/Off Mini Plug 1.01 Binary Power
-500 Series Switch
3 Device 3 v + 6.51.06 Shenzhen Neo Door/Window Detector 3.61 Notification
Electronics Co., Ltd Sensor
4 Popp Water Sensor v + 6.51.09 Popp 0.09 Notification
Sensor
5 Fibaro Smoke Sensor @ v + 6.51.06 Fibaro 3.03 Notification
FGSD-002 Sensor
11 MainsDevice _11 v 4 <+ 6.71.01 Popp 3.01 Binary Power
& Switch
12 MainsDevice _12 v + 6.71.01 Popp 3.0 Binary Power S0,52
a Switch Unauthenticated

Figure 7.9: Device information overview

(either confirmed sending or reception). The green checkmark indicates that the device is alive. A red sign indicates
that the controller assumes the device not being active anymore. Mains powered devices can be checked for their
network availability by hitting the (o] button on the right-hand side.

In case the device interview and configuration were not performed properly, a little question mark icon will indicate
this. Clicking on the question mark will open a window displaying the details of the interview process. The correct
loading of a Device Description Fileﬂ is indicated as well. For a battery-operated device, the time of the last wakeup,
the time of the next wakeup, and the current wakeup status are shown. Clicking on the table heads reorders the table
view of the data. Clicking on the table heads reorders the table view of the data.

7.3.2 Type Info

The type info dialog shown in Figure[7.9]lists all devices of the network and indicates if they support enhanced Z-Wave
functions such as Security and Z-Wave Plus. Additionally, the Z-Wave protocol version, the application version and
the device type indicator of the device is shown.

The security icon determines what kind of security the device supports:

. : Device does not support any security class

. ﬂ : Device supports security version 1

. ﬂ : Device supports security version 2

. a : Device supports security version 2 but authentication failed

The last column shows the security keys granted for the device.
Clicking on the table heads reorders the table view of the data.

7.3.3 Battery

This dialog shown in Figure[7.10|gives an overview of the battery status of the battery-operated devices in the network.
Devices are listed by name and id. The last reported battery level (0-100 %) including update time is shown as well as
the number and type of battery if known. The button will request a status update from the device. The new
status will be available after the next wakeup of the device. Clicking on the table heads reorders the table view of the
data.

7.3.4 Active Associations

This overview page shown in Figure lists the current association set in the network. The Lifeline is an association
to the gateway to report status changes and heard beat and can be hidden if needed. A button leads right to
the configuration page of the device to change association settings.

For more information about Device Description files, please refer to Section

75

7 The Z-Wave Expert User Interface

‘

Battery

Device name Battery type Level Date - O Update all
77 Haustiir [} 100% 12:42 O Update
55 Rauchmelder OG [88% 12:42 O Upgate
26 Rauchmelder UG [88% 12:42 O Update
42 Christian 215V AA [59% 12:38 O Update
19 Carport EYLTY.Y [40% 12:37 O Update
57 BatteryDevice 57 [88% 12:32 O Upgate
7 CP Jal Control 2TAAAA [89% 01.08.2017 O Update

Figure 7.10: Battery status overview

_

Active associations

Device name Assoc group name

7 CP Jal Control Single press and held of up/down buttons

Change
e CP Jal
12 KU Decke Single press and hold of up/down buttons # Change
[
14 SL Decke Double press and press-hold of up/down buttons # Change

0 SL Schrans

Figure 7.11: Active association overview

76

7 The Z-Wave Expert User Interface

& Interview £ Configuration =3 Association €5 Link health [Expert commands X Firmware update
NSl Dol a Jmage
(#14) SL Decke n Device Name 5L Decke ¢ b

(#1) Z-Way Device Id 14

(#3) CP Decke Brand Z-Wave.Me
Device type Reuting Multilevel Switch

(#5) KU CO2
Product Flush-Mountaple Dimmer v1.8

{#6) KU Temp
Description One paddle dimmer

{#7) CP Jal Controf
(#8) CP Jal

To {re-)include Button triple press
Wireless Activity " active

(#11) Keller Temp Application version 1.8
(#12} KU Decke SDK version 4.54.01

{#13) CP Fenster Command Class

{#15) 5L Schrank

s m

[#18) SL Jal Interview

{#17) Verandatlr G5

[#18) Carport O Call for NIF View Interview Result Select Device Description 2ZDDX Code Creator

{#21) Werkstattlicht

{#22) Waschmaschine

Figure 7.12: Device interview

7.4 Configuration
The tab allows configuring the functions of a particular device. Pick the device to be configured from

the drop-down list or pick the device from the full list shown on the left-hand side. The functions of the device are
grouped into 6 tabs.

7.4.1 Interview

[Configuration)) Interview|, as shown in Figure ‘ documents the result of the device interview. In this process, the
controller tries to get information about the device. In case the controller finds a device description record for the
device, it will display further information about the device that cannot be obtained from the device itself:

+ Product Image

« Information regarding how to include the device

« Information for battery-operated devices about how to wake them up manually

« Human-readable meanings of configuration parameters and values

If the software will not automatically recognize the device and load the description record a button (Select Device Description Record]
allows doing this manually. However, the description file must be present. Chapter[13.3 gives further information on
how to create an own Device Description Record and load it into Z-Way ™ .

The interview stage line gives information about the progress of the device interview.

There are a few reasons why an interview is not complete: In most cases the devices went to deep sleep too early to
have some wireless connectivity problems. The button allows re-doing the whole interview. The button
requests a Node Information Frame from the device and the Button allows displaying the
information about the different command classes found during the interview. It is also possible to force the interview
of a certain command class only.

The button allows creating an XML description file usable for certain device databases.

The only configuration option on this tab is to change the given name of the device. During inclusion, the software
generates a generic name, but it is highly recommended to change this name. The given name should be descriptive
but not too long.

7.4.2 Configuration

[Configuration)) Configuration| shown in Figure allows configuring the device. If the specific device was recognized
correctly the different configuration values are translated into human-readable dialogs. Every configuration comes
with standard dialog options:

« Time Stamp, when the configuration value was last updated

77

7 The Z-Wave Expert User Interface

RIEDE DT

& Interview £ Configuration =3 Association €5 Link health [Expert commands X Firmware update
(#14) SL Decke (%] Update from Device [[Z) Save into Device ['O Set all to default
(#1) Z-Way
{#3) CP Decke N 1 - LED mode
(#5) KU CO2 () Disabled
(1) Show switch state
{#8) KU Temp (2) Might mode (inverted switch state)

{#7) CP Jal Cont = (3) Operated by Indicater Command Class
al Contro

{#8) CP Jal Updated: 11.07.2015 | Set value: 3 | Default value is: Operated by Indicator Command Class

{#11) Keller Temp €) Set LED indication mode

{#12) KU Decke

 save this parameter D) Set to default

{#13) CP Fenster

{#15) 5L Schrank

N" 2 - Automatically switch off after
= (0) Disabled
1 {min: 1, max: 65535)

{#16) SL Jal S8

{#17) Verandatlr G5
Updated: 11.07.2015 | Set value: 0 | Default value is: Disabled
{#19) Carport

(#21) Werkstattlicnt) if not zero, automatically switch off after a user defined time

 save this parameter D) Set to default

{#22) Waschmaschine

(823 WO Stehlamne

Figure 7.13: Configuration - convenient view

« Set Value as integer

« Information about the default value of this particular parameter

« Button to reset to default value given by the device itself

« Button to save the parameter into the device

If the device is not known (means there is no Device Description File assigned to it) it is still possible to set configuration
values. Figure[7.14 shows the generic configuration dialog used in this case. The specific configuration parameters
and its values need to be read from the device manual.

There are four more command classes that may need additional configuration and are displayed in the same dialog
if the device supports them.

« Wakeup: Define the wakeup interval and the node is of the main controller taking care of the wakeup sequence.
The controller will set a standard wakeup time of 1800 seconds unless the devices sets a different minimal or
maximal wakeup time. In most cases the node ID of the controller is the correct setting for the target node ID
and should not be changed. In case this controller is only a secondary controller, this value may change. A tool
tip on the input field shows the allowed minimum and maximum wakeup time as reported by the device.

« Protection: In case the device supports local protection, meaning suppressing local use of the device, the be-
havior of this function can be defined. The protection command class offers more options than displayed here.
Refer to the [Configuration >> Expert CommandS‘ tab for a complete set of controls.

« Switch All configuration: Z-Wave supports the so-called switch all function as a broadcast to all switches and
dimmers. This setup defines the reaction of the device to such a (switch Al command. The setting is also displayed

in the section as little gray/green icon.

Note: For mains-powered and FLIRS devices, the button (save this parameter] Or (Save into Device] will activate the changes
within few seconds. For battery-operated devices, the commands are stored to the next wakeup. It’s possible and
recommended to wake up the device manually to speed up the change of configuration values.

7.4.3 Association

Associations allow switching a Z-Wave Device B (target) as a result of an event in Z-Wave Device A (source). Z-Wave
Device A manages a list of devices to be controlled for each event supported. The device list associated to a specific
event—also called association groups—and the devices that are associated with it are shown in the association tab in
Figurd7.15]

In case the information is provided either by the device or by the device record stored in the software, the meaning of
the events is written. Otherwise, the event group is shown unnamed as number only. In this case, refer to the devices
manual for more information about the association group meaning.

The stored devices can be called from the actual device using a button. The buttons used to add and remove
device from the group. A dialog is opened and a device can be picked. In case this device has multiple instances, an

78

7 The Z-Wave Expert User Interface

& Interview £ Configuration =% Association €5 Link health [Expert commands
[#26) Rauchmalder UG 3
@ This device doesn't have the necessary service
#1) Z-Way Configuration
(#3) CP Decke
(#5) KU o2 Parameter 0o
(#8) KU Temp m
{#7) CP Jal Control
(#8) CP Jal
Parameter 0
(#11) Keller Temp
{#12) KU Decke Value ©
{#13) CP Fenster Size
{#14) 5L Decke = (0) auto detect
1)1 byte
#15) SL Schrank {
#18) chran 2)2 byte
(#16) SL Jal (4) 4 byte
(#17) Verandatir G5 m
{#18) Carport
{#21) Werkstattlicht
Parameter 0

{#22) Waschmaschine

(#23) WO Stehlampe

{#27) Bodenjal

Figure 7.14: Configuration - generic view

X Firmware update

& Interview 4 Configuration =3 Association €5 Link health [Expert commands
(#7] CP Jal Contral) €71 Update from Devica
(#1) Z-Way 1. Single press and held of up/down buttens (maximum 10 devices) | @ 11.07.2015

{#3) CP Decke
(#5) KU CO2

{#8) KU Temp
(#8) CP Jal

{#11) Keller Temp
(#12) KU Decke
#13) CP Fenster

A nzway | x| Apsocrla | X

2. Double press and press-hold of up/dewn buttons (maximum 10 devices) | © 11.07.2015

Aw1.2)z-way | x

Selected in Ul but not active in device yet
Active in device but not selected in Ul
1) Selected in Ul and active in device

Figure 7.15: Association dialog

79

X Firmware update

7 The Z-Wave Expert User Interface

@ Interview ﬂﬁ Configuration =y Association 3 Link health |u?_ Expert commands .1.. Firmware update
#27) Bodena Link to node Device name Davice type Data Link quality O Test all links

Z-Way -] 12:26 .
(#1) Z-Way . O Test link
{#3) GP Dacke CF Dacke 5 20.02.2017 . O Test link

5 o
(5 KU Go2 KU co2) 29.03.2017 ® O Test link
(#6) KU Temp
5 0032017

(#7) GF Jal Control CF Ja 28.02.201 . O Test link
(#68) GP Jal KU Decke ¥ O Test link
(#11) Keller Temp

CP Fenster ¥ 29.03.2017 .
(#12) KU Decke ® O Test link
(#13) GP Fenster SL Decke 5 29.03.2017 ® O Test link
7145 Becke 5L 5ch 5 29.02.2017 ®

chrank RECE .
(#15) SL Schrank O Test link
(#16) 5L Jal SL Jal 5 29.02.2017 O Test link
e

(#F17) Verandatlr G5 Verandatr G5 - 29.03.2017 @ O Test link
t#19) Caroort

Figure 7.16: Link health

instance drop-down list will appear allowing to choose the right instance of the target device. The node ID and—if
applicable—the instance ID are shown in the target device list. Move the mouse over the ID to show the complete
given name of this device. The color of the device name or ID indicate the status of the association entry:

« Yellow: Selected in user interface but not stored in device.

« Grey: Active in device but not selected in user interface.

+ Blue: Selected in user interface and stored in device.

7.4.4 Link Health

Modern versions of Z-Wave allow testing the quality of a link between two devices in direct wireless range. The
dialog shown in Figure[7.76] lists all devices in wireless range and gives an indication about the quality of this link.
The following colors are used:

« grey: untested

« green: good quality

« yellow: reasonable quality

« red: link quality insufficient
Individual links can be retested using the button. It is also possible to test all links from a given device.

However, please keep in mind that this process may take several minutes to complete.

7.4.5 Expert Commands

| Configuration) Expert Commands | as shown in Figure displays the status values and possible commands in a very
generic way. On the left-hand side, the different instances (channels) of the device are listed in a column. In case there
is only one channel (that’s the case for most devices), only channel/instance 0 is shown. Clicking on the number opens
a dialog showing all internal variables for the channel. The next column shows all the command classes exposed by the
device. Again, clicking on the name opens a dialog with more internal status variable information for this command
class. On the right-hand side, there is a list of commands. This dialog form is auto-generated from the information
provided by the command class itself and not optimized for daily usage.

7.4.6 Firmware Update

In case the device supports a firmware update “over the air,” this dialog is shown to perform such a firmware update.
The firmware file to be uploaded must be available in a raw “BIN” or the Intel hex “HEX” file. The target field allows
specifying the target memory/processor for the update process. For updating the Z-Wave firmware part a “0” must
be set. The firmware updating process will take up to 10 minutes. Please don’t do any other operation during this
time. It may be required to activate the firmware update mode on the device to be updated. Please refer to the manual
for further information about activation.

80

7 The Z-Wave Expert User Interface

& Intarview o Configuration =5 Association £5 Link health [Expert commands X Firmware update
(#27) Boden|al 2 Instance GommandClass Gommand / Parameter
o Basic
(#1) Z-Way
(#3) CR Dacke ovel 255 11.07.2015
. Level
(#5) KU GOz [0 OoF
(#6) KU Temp Dimmer level | fmin: 0, max: 255)
(#7) CP Jal Control (99) Mz
(255 On
(#8) CP Jal
T —
(#12) KU Decke

(#13) CP Fanstar o SwitchMultilavel
witchMultileve
(#14) 5L Decke

(#13) 5L Schrank Dimmer level

(#18) L Jal = (0] Off
(#17) Verandatir G5 % 0 {min: 0, mas: 99)
(#19) Carport g:];gn

(#21) Werkstattlicht Duration

(#22) Waschmaschine s (D) immediataly
(#23) WO Stehlampe in seconds | 1 fmin: 1, max: 127}
(#26) Rauchmelder UG in minutes 1 [min: 1, max: 127}

(#28) Jal Links

FE200 |al Warands

Figure 7.17: Experts commands

7.5 Network

The network section of the user interface focuses on the network as such and offers all controls and information to
build, manage, and repair the wireless network of the controller.

7.5.1 Control
summarizes all commands needed to manage the network and the controller. The page is structured

in four boxes.

Device Management

The device management box as shown in Figure[7.18]allows including and excluding Z-Wave devices. A status display
shows the status of the controller. The and button turn the controller into the Inclusion and
Exclusion mode. In this case the status display changes and the resp. buttons turns into a (stop) function. The inclusion
and exclusion modes will time out after about 20 seconds but can always be terminated using the buttons.
Another way to stop the inclusion mode is to actually include a new device. In this case the inclusion mode will stop
and the node ID of the new device is shown. The controller generated a default name of the device as combination
of its primary function and the new node ID. Clicking on this default name leads to the page where the
name can be changed and other configuration tasks can be performed.

Please refer to the devices manual on how to do an inclusion. In case the inclusion does not work as
expected, please exclude the device first. More than 90 % of all inclusion problems are caused by still
included in a different network and can then not being included again.

The Exclusion mode also stops when one device was successfully excluded. This function can exclude devices from
other networks too but the device need be available and functioning. To remove nonfunctioning or disappeared devices
pIease refer to [Replace Failed node] or [Remove Failed node.]

In case the new device supports enhanced security function (Security Command Class), this controller will include
the device securely. After this all data exchange between the controller and the new device is encrypted using AES

encryption. For performance reasons, it mays be desired not to use the security function. The slider (Force unsecure inclusion}
turns the controller into a mode where all security functions are suppressed for the included device. Security functions

of other devices are not impacted. In case the new device supports Security S2 right after inclusion, a pop-up window

81

7 The Z-Wave Expert User Interface

Control
& Device Management o Network Maintenance
Pick the failed node from the liet and remove it from the network eonfiguration. This will
Eorce unsecure inclusioniadece i i BT take about one minute to complete.

Gontroller is primary in the network. It is the only that can add and remaove devices todfrom
thie metwork.

Plck a node of a failed device. After hitting the button you can include a new device right

Controller is in normal mode with this Node ID.

+ Raplace failed node

Mains powerad nodes are marked as fallad autometicaily. Battery powened devics you
naed to mark youmelf in order to remove or FQPIB.CB them. Handla with care.

O ¥ Mark Battery Devics aa failed
& Enter / Leave differant Networks

Start the exclusion mode on the customer's primary cantraller and click the buttan below. This functions run over all existing nodes and asked for & NIF. You can alzo call a NIF for
each individual devica using the [configuration tal
&, Gall NIF from all devices

This starts an inclusion process for a new controlier. This new controller will becoma the
mevw primary controller of your network.

=5 SUC/SIS management
[————

on node 1

& Backup and Restore

s omaces § G

¥ Operating frequency

Current frequency: EU
) Can b wriknown, urgupgoried or any region (ELLSALL.) £ Controller Maintenance

« 30K
This button rezsata the serial communication betwean the controller software and the Z-

‘Wawa trenscalver finmware. its save to use

-~

= Reset AP

This resets the whole netwark and deletas all raferenca s to existing devices. Handle with
axtremea can,

A Gontroller Factory Default

Figure 7.18: Network Management

82

7 The Z-Wave Expert User Interface

Key granted

Select Authentication for new device:

9s remain

52 Unauthenticated

Figure 7.19: Z-WAVE EXPERT USER INTERFACE - S2 key selection

Verify device PIN

Verify PIN code for new device

Bs remain

PIN 39376 - 1952 -| 38130 |-| 27386 |-| 33550 |- 51134 |-| 38800 - 29458

¥ Cancel + confirm

Figure 7.20: Z-WAVE EXPERT USER INTERFACE - S2 key display

will appear asking the user to grant the S2 security keys. A few basics about this process: Security in Z-Wave means
among others that all communication between two nodes over the air is encrypted. Encryption however requires a
key to encrypt and all the device communicating shall have the very same key—usually called network key. Z-Wave
Security 2 handles 4 different network key. They differ by their level of trust.
+ S0:The network key is needed to communicate with a device capable of Security CC Version 1. Hence, this is
more for backward compatibility.
« S2 Unauthenticated: The device-specific key of the device included is not verified. In case the device has its key
(as PIN number of QR Code) on the enclosure, it is possible to compare the two numbers but the key assignment
does not verify this choice.
« S2 Authenticated: Right after inclusion, the device-specific key (as a PIN or AR code) must be manually provided
to the included controller in order to verify the identity of the device just included.
+ S2 Access Control: This key requires similar authentication than S2 authenticated. This additional key is pro-
vided to separate control of door locks and other access devices from other devices.
Each device will request one of more network keys according to the device usage and implementation idea. The default
key is likely S2 Authenticated but Door Locks will ask for S2 Access control and small devices without external label
request S2 Unauthenticated only. Figure [7.19)shows the dialog to grant the keys. The requested key is displayed in
bold letters. The user has 20 seconds to select the keys to be granted. If no selection is made with 20 seconds, the
process will time out and the device is included unsecure. Please note that some devices may still offer valid functions
while other will deny any function outside a secure environment. It is recommended to grant the keys requested, but
there may be certain environments where other selections may make sense.
Once the selection is made before timeout a second window will request the authentication of the device. In case of
S0 or S2 Unauthenticated, the window displays the device-specific key for information only as shown in Figure [7.20]
If a key is visible on the device, it is recommended to compare the numbers. However, the key is granted without any
further interaction by the user.
In case S2 Authenticated or S2 Access Control keys were requested the dialog windows asks for providing the Device
information by the user. This can be done by typing in the 5-digit PIN code (first 5 numbers of the device-specific key)
as shown in Figure [7.2T)or by scanning the QR code on the device shown in Figure
In case of Access or Authentication, the user must insert either a PIN number or scan a QR code from the device just
included. This insures 100% that the device just included is really the device in hand. If authentication fails, an error
message is displayed. It is not possible to redo the key authentication only. You must exclude and re-include the
device.

83

7 The Z-Wave Expert User Interface

Verify device PIN

Verify PIN code for new device

11s remain

PIN 0 - 1421 - 53937 |- 52362 |- 28824 - 51434 -| 46734 - 24069

% Cancel v confim

Figure 7.21: Expert User Interface - S2 authentication

4, New Device Key 88 Scan QR code i= Device Key List

Please enter the Key on new Device (DSK - device specific keys), which you find below QR code

Figure 7.22: Smart Start - enter Device Key (DSK)

Smart Start

Smart Start is a new way to include devices into Z-Wave using the QR code provided with S2 authentication. The user
scans the QR code thats is stored in an internal so called provisioning list. Smart Start Devices will then announce to
be included when powered up. In case the S2 key is in the provisioning list the controller will automatically include
this new device without any further user interaction.

Smart Start is controlled by the button (Activate/Deactivate Smart Start] . The button opens a submenu allowing to
register Device keys either by typing the 8 groups of numbers as shown in Figure [7.22 or using a QR code scanner
as shown in Figure Please note that a standard web browser running on a standard PC may not provide the
capability to scan QR codes.

Figure[7.24 finally shows the lost of Device keys already registered in the system and not used. Used means in this
context that the corresponding device was powered up in proximity of the controller and got included automati-
cally. Please note that the Razberry Shield or UZB or any hardware used must provide a firmware with SDK >=6.81.
Otherwise Smart Start will not work.

Enter/Leave different Network

This button will only be active if Z-Way™ is in factory default state. Only in this case the controller can be added to
a different network as secondary controller. The controller of the other network must be in either the Inclusion or in
the Exclusion mode, and the Learn button confirm the process.

In case the new primary controller supports Security S2 a dialog window will pop up right after finishing the inclusion

&, New Device Key 8% Scan QR code i= Device Key List

Use your smartphone to scan the QR code. You'll find this cede somewhere on the box...

Scan QR code

Figure 7.23: Smart Start - scan QR code (on smart phones only

84

7 The Z-Wave Expert User Interface

@, New Device Key 8% Scan QR code i= Device Key List

DSK
52861-62003-24761-45425-36170-56974-49321-40051

Figure 7.24: Smart Start Provisioning list

zws2dsk:34028-23669-20938-46346-33746-07431-56821-14553

Figure 7.25: Z-Way"" - own key for authentication

by the new controller. This dialog window will show the PIN number and the QR Code of this Z-Way" controller
needed to authenticate against the new controller.
The function actively hands over the role of the primary controller of the network to a controller that

will be included using the normal inclusion process. The controller status dialog shows the mode and its termination.

Backup and Restore

The next dialog box of the page allows creating and using a backup. The backup file is stored on the local computer.
Please note that any restore will overwrite the existing network. The restore operation must therefore be confirmed
in another message box. A checkbox defines if the node information in the Z-Wave chip itself will be overwritten as
well. This operation result in a possible loss of all network relationships and may require a re-inclusion of devices.
Handle with care!

Controller Maintenance

The controller maintenance offers two reset buttons. The restarts the operating system of the Z-Wave
transceiver chip. This can be done safely all the time.

The (Reset Controller] turns the controller back into factory reset. All connections to included devices and all configurations
and settings are lost. This function must be handles with extreme case. An additional dialog requires to explicitly
confirm the function. Only use this function if you know what you do!

Operating Frequency

This dialog allows changing the operating frequency. Please note that a wrong frequency will block all Z-Wave
traffic and make the device inoperable. Frequencies can only be changed within one frequency group. These are the
frequencies shown side by side (e.g. EU, RU, IN, ...). Changing to a frequency outside this group will technically work
but the wireless range will be few centimeters only. Hence, this for workbench testing only. The device will reboot
after a frequency change so please allow some time for restart.

Network Maintenance

The function allows removing a node that is no longer communicating with the controller. After
multiple failed communications with a device the controller will mark this device as failed and avoid further commu-
nication. This function finally removes such a device from the network configuration. The drop-down list will only
show IDs of failed nodes. If this list is empty this is a good sign!

85

7 The Z-Wave Expert User Interface

Neighbors =2 Info and Neighbors | B Neighbors
Device name Type info Updated O Updataall 1@ 8 & B 11 12 3 1@ & 16 17 @ 21 2 23 26 27 B 28 40 0 34 35 2
1 Z-Way “ 12:55 O Update SN ENENEEEEEEEEEEEEEEEE!
3 GF Deche ¥ 157 OUpdte @ E SN ESSEEEEEEEEEEEEREEI
5 Kucoz 4 12 OQupiee 1 S RSN EEEEEESEEEEEEEEEEI
6 KUTems = % Qe EEE SESEEESEEEEEEEEEEEENI
g CFJal ¥ 18:00 Oupste HHEH SN EEEEEEEEEEERENI
11 Keller Tamp = % Qe EEEESE SEEESSESEEEEEEEEEEENI
12 KU Decke b 1756 OUpdte I H B EEE S SN EEEEEEEEEEERENI
3 CP Fanstr $ 2% g4, EEEEEES EESSEEEEEEEEEEENI
14 SLDecke ¥ 1250 OUpdte I H T B S EEE SEEEEEEEEEEEERENI
5 SLScwank $ w0 (gue. EEEEEEEES SEESEEEEEEEEEEI
16 St $ % Qe EESEEEEEEE SEESEEEEEEEEENI

17 Verandatir G5 = 11:58 Opdate I H I IS S EEE SENEEEEEEEEEE!

Figure 7.26: Neighbors

It is also possible to with a new node. This is a combination of removing the failed node and adding a
new node. Using this function makes sure the next included node has the same node ID as the failed node. The drop-
down list will only show IDs of failed nodes. If this list is empty this is a good sign! Battery-operated devices are mainly
in deep-sleep state and will not answer to communication requests. Hence, the controller will never automatically
detect if a certain device is defect or gone. The function (Mark battery device as failed) manually marks battery-operated
devices as failed so that they can be removed or replaced. The drop-down list shows all battery-operated devices but
this does not mean that they are failed.

The (Request NIF from all devices] function is just a convenient way to retrieve a Node Information Frame from all devices of
the network.

SUC/SIS Management

The SUC/SIS Management pane allows manipulating the self-organization of the Z-Wave network. Don’t use this
unless you are a developer who knows when and why this is needed for testing purposes.

7.5.2 Neighbors

This table in Figure[7.26 shows the neighborhood relationship of devices. The id, the name and the type of the node
are listed. Green indicates that the two devices are in direct wireless neighborhoods and don’t need any other device
to forward their signals. A red color between two nodes indicated that routing is needed between these devices. The
button calls the device to scan its neighborhood and report back the result to update its own line of the routing
table.

7.5.3 Reorganization

The reorganization page controls as shown in Figure[7.27)an algorithm that reorganizes the network relationships and
fixes problems. With checkboxes various stages of the algorithm can be selected. The result of the reorganization is
shown in a log and can be downloaded. The network reorganization calls for every node to redetect its neighbors.
This operation will work if there is a working route to this device and this device is not sleeping. If the operation fails,
the algorithm will have three more attempts to reflect possible routes to the very device that may be reestablished
during the reorganization. Detection of neighbors for battery-operated devices will be started after all mains-operated
devices are processed. The requests to battery-operated devices will be queued. For more information about job
queuing, please refer to Chapter[7.8

86

7 The Z-Wave Expert User Interface

Reorganization

Mains powered devices Battery operated devices
> M W L Lastrecrganization: @ 13:06:20 02.06.2017

-55:33 recrganization started (without battery powered devices)

-56:33 recrganize all main powered devices: [F1°,75% 15" N80 12T 1 T4 TG0 TGS TR TRRT TR ET N UREY U200 TA5" T8 . MA0" AT 6l , "85

-55:33 #1 {main) ... recrganization successful

Moo e MR R e e e R R M fa M R

56:13 #3 jmain) ... timacut

125815 #3 (main) ... recrganization successful
12:56:23 #5 (main) ... timecut
12:56:33 #8 (main) ... timecut

5640 #5 (main) ... reorganization successful

12-56:44 #12 (main) ... timeout

12:56:49 #8 (main) ... 1. try has failed - next try ...
12:58:53 #13 (main) ... timeout

12:57:03 #14 {main} ... timeout

12-67:14 #12 {main) ... 1. try has failed - next try ...
12:57:18 #15 (main) ... fimeout

12:57:23 #16 (main) ... timeout

12:57:20 #13 (main} ... recrganization successful

Figure 7.27: Reorganization

7.5.4 Network Map

The Poltorak-Chart as a way to map the network is an extremely powerful, informative but the same time very
complex viewgraph of the network situation in a home. The chart visualizes the possible links between the nodes and
how they are used. If provided by the devices the chart will furthermore show complete routes and the signal strength
of the individual links of a route. However only devices with SDK greater or equal to 6.71 will provide this additional
information.

Initially all nodes are displayed with equal distances. It is possible to drag and drop the nodes to match the distances
between them with the real distances. This will always work quite well if the Z-Wave network is in one floor only.
A 2D map can be uploaded as background image to support the mapping. If the network is distributed on multiple
floors it is recommended to do a best guess to keep the round initial view.

Figure[7.28shows a typical chart. By clicking on a certain node and then moving the mouse over it again, it is possible
to analyse the traffic from and to this very node. This allows focusing on the situation of this node only.

The lines between the nodes represent the wireless connections and the communication between the nodes. The
following information is encoded in these lines:

« Color: The color indicates the wireless signal strength of the connection if it can be measured. Red means a very
high wireless signal. The device is likely very closed or in direct sight of the each other. A black color means a
standard wireless strength, gray indicates that the received signal strength (RSSI value) is not known.

« Thickness: The Thickness of the line indicates the amount of traffic running over this line. This can be direct
communication between the two links or routed traffic. If a route exist there will be a single pixel line. Every
line thicker than a pixel shows real traffic.

« Dotted versus solid: A dotted line indicates that this link is sometimes just not working.

7.5.5 Timing Info

The Timing tab in Figure shows some very valuable timing information of communications between the con-
troller and other devices. All other devices the controller has communicated with are shown in a list. The number of
packets and the percentage of successful communication are shown. This can give an indication about the stability
of the communication link between the controller and this device. On the right-hand side, the timing delay of each
communication is shown and color-coded. A red number indicates that this communication finally failed. A com-
munication without rerouting attempts as shown as green and a rerouting attempt is coded in black. The fact that a
communication failed (red) may indicate that there is a severe problem in the network or in the device. It is however
also possible that a battery-operated device just went back to sleep too fast. Z-Wave professionals can read a lot
out of this timing information particularly when combined with the routing table. Please refer to Chapter [g|for more
details on troubleshooting Z-Wave networks.

87

7 The Z-Wave Expert User Interface

All routes Node neighbours Medes this node is repeating for Nodes associations =~ @& Show annotations

3 Allow node moving X Upload image

. 90 o

Figure 7.28: Poltorak-Chart

16 5L Jal L) 10:45 1 100% 13

17 Verandatir G5 = 10:03 30 100% 12 10 5 5 12 11 10 5 5 11 13 10 4 5 12 12 11 § 5§ 12

19 Carpaort = 1028 30 100% 13 13 13 18 12 13 13 12 13 13 13 12 13 16 13 13 14 13 13 13

21 Werkstattlicht L 10:45 2 50% 578 11

22 ‘Waschmaschine L) 10:45 30 93% 266 21 43 104 113 6 243 17 220 274 853 221 27 6 V9 9 23 128 355 34
23 WO Stehlampe ¥ 10:50 a0 100% 11 11 10 10 7 242 4 20 362 164 7 10 419 4 204 47 21 4 4 14

26 Rauchmelder UG L4 10:45 30 100% 123 2 131 8 127 134 3 3 132 234 232 124 130 136 128 128 127 128 127 122
27 Bodenjal L 10:45 1 100% 2

28 Jal Links L) 10:50 13 100% 6 8 5 210 5 8 B B 6 80 5 34 6

29 Jal Veranda L 10:45 30 100% 30 28 8 5 B 5 9 5 B 556 B 6 9 18 14 6 9 125

30 Regenmelder = 05082017 O 0%

33 Haustuer G5 05.06.2017 0 0%

34 Windsensor = 1046 30 7% 20 16 12 16 91 53 20 153 13 11 17 12 12 18 11 12 12 17 11 12
35 Hauselektro L 10:50 30 100% 71 40 173 25 25 25 25 5 22 126 18 5 15 159 544 43 10 46 103 19
36 Gefriertruhe L 10:45 30 % 22 B45 14 79 37 785 S48 48 17 B0 259 1000 38 14 7 7 VT 7T 80 11
40 KU JalCon = 06.06.2017 1 0% 529

41 SLJalCon = 05062017 0 0%

42 Christian = 10:50 30 83% 2 2 22 4 20 4 11 213 9 183 2 2 22 4 3 205 3 199 2 2

43 Wohn Jal L) 10:50 30 97% 146 180 4 4 4 4 466 147 10 9 B 9 B 9 9 89 8 9 9 8

46 BodenJalCon Y 07.06.2017 3 33% 38 43 10

47 Swild Cord Switch ¥ 10:50 a 0%

51 PIR FLUR = 1028 30 100% 12 18 10 12 11 10 12 11 11 12 118 13 112 41 13 119 68 159 26 19

Figure 7.29: Timing Info

88

7 The Z-Wave Expert User Interface

Link Status #2 info and Link Status | B Link Status
Deavice name Device type Updated 1 a 5 & & 1 12 %3 14 1% w17 e o2 23 23 2 27 28 20 M X M O35 W

5 CP Decke L) 12:26 OTestink W [] EEER EER]

5 KUCQ2] 14:00 onor B

g HJTemp - 14:4% O MOP [|

7 CP.Ja Control B 0717 onor B

g CPa) 1226 OTestiok LR] EEER [N] [|

11 Keller Temp - o7y onor W

12 KU Decke ¥ 1244 [§ | [] EE ® EEEEEEE B EBRI

a CP Fenster & 12:63 O Test link [] [| aEEn am

14 SLDecke 5 12:26 onor | B

15 5L Schrank ¥ 12:28 O NOP []

{7 Verandatir G§ - 1617 O Test link [B BB B EER

1g Carport = 1517 O Tast link

24 Werkstattiicht 5 12:26 ["N | | | 2 BB

2z Waschmaschine] 1500 O Test link [} Bl [] B EBR HE B BN

Figure 7.30: Link Status

7.5.6 Link Status

The link status map, as shown in Figure[7.30} summarizes the device-specific link status information from the config-
uration sections.
The following colors are used:

« grey: untested

« green: good quality

« yellow: reasonable quality

« red: link quality insufficient
The links from one device can be retested using the button. However, please keep in mind that this process
may take several minutes to complete. For devices that do not offer a link status function in their firmware, there is a
simple connection test to the Z-Way"" controller using a “NOP” Please note that this function does not test a direct
wireless connection but the route to the controller only.

7.5.7 Controller Info

This menu item as shown in Figure provides some internal and very technical information about the Z-Way™
controller software, hardware, and firmware. The different submenu items are self-explaining.
Some buttons allow special maintenance functions:
. : This button opens a new tab with a list of all wireless jobs in the system. For more information
about this, please refer to Chapter|[7.8] This is needed for debugging purposes only.
+ [Send Controller NIF}: Sends out the Node Information Frame of the Z-Way" controller. This is needed for debugging
purposes only.
. : When active this button is shown in green. Active debugging unlocks some special function embed-
ded in the rest of the Expert User Interface. Among them is the user interface to edit so-called “Postfix Records”
The postfix function allows changing device capabilities after the device interview. Typical postfix entries sup-
press certain functions that are announced by the Node Information Frame of certain command classes but not
or wrongly implemented. Postfix is also used to rename certain functions to more meaningful terms. Post fix
entries are typically created during device testing.

* (Show controller data) and (Show controller’s device data) : The controller is a special node in the network but still a node.

89

7 The Z-Wave Expert User Interface

Q, view Job

The inspect queus will apen a second window to allow monitoring the command's sent out by this controler

Ruole in Natwork

Nede Id: 1

Hoime Id: Oxcfid9cid

Primary Rale: ez

Primary Capability: Yes

SUC/SIS in network: 1(8I5)

Hardware

Vendor: RaZbermry by Z-Wave Me
Vendors Product 10: measz

Z-\Wawve Chip: 2W0500
Firmwara

Library Type: Static Controller

S0k Version: 6.71.01

Serial APl Version: 05.23
Capabillitias:

uuio: SBd256fad081 22a0831 BATTO45Me1 36
Subvendor: 0x0000

Nedes limit: Unlimited
‘Capabillities: SIM

Software Information

Version number: v2.3.5-rcd

‘Compile-1D: 79567c57ac0Bodiblasboch 7400eB5e5026c43Td
‘Compile-Date: 2017-05-03 13:07:03 0300

ul

Ulversion 1.2.0-RC-61

Built date 27-04-2017 15:37:18

O Send Controller NIF | i Debug mode Show controlier data || [T Show contraller's device data | T Firmware Uipdate

Functions:

BerialAPIGetinitData (0x02) - SerialAP1ApplicationModelnformation (x03) - ApplicationCommandHandler {0x04) « GetControllerCapabilities (Jx05) - SerialAPISetTimeaouts [OxdE) -
GetSerialAPICapabilities ((x07) + SerialAP|SoftReset (0x08) + Not implemented (DxE) « Not implemented (D:x0e) « SerialAPISetup (0x0b) + Mot implemeantad (i) + Mot implemented
{0x11) + SendMedelnformation (0x12) + SendData (0x13) « Mot implementad (4} « GetVarsion (0x15) « SendDataAbort {0x18) « RFPowerLevelSet (0x17) + Not implemented (0x1c) «
‘GetHomeld ({020} « MemoryGetByte (0x21) « MemoryPutByte (0x23) « MemoryGetBuffer (0x23) « MemoryPutBuffer (0x24) « FlashAutoPregSet (0x27) « Mot implemented (0x28) +
NVMGetld (0x25) + NVMExtReadLongBuffer (2] - NVMExtWritaLongSuffer ((x2b) + NVMExtReadLongByte (Ux2c) « NVMExt\WriteLongByte (0x2d) « Mot implemented (Ox2e) « Mot
implemented [0x37) + Not implemented (0x38) + ClearMNetworkStats (0x39) + GetNetworkStats (0x3a) - GetBackgroundRSSI (0x3k) + RemoveModeldFromMNetwark (0x3f
GetNodeProtocolinformation (Jxd 1) + SetDefault ((x42] - ReplicationReceiveComplate [Ix44) « Mot implemented (0xd5) - AssignReturnRoute (0x48) - DeleteReturnRoute (0x47) «
ReguesthledeNeighbourUpdate (048 - ApplicationModell pdate (0x49) - AddMNodeToMetwork (0wds) + RemoveMNodeFromMetwori (0xdb) - CreateMewPrimary (Owdc)

Figure 7.31: Controller Info

90

7 The Z-Wave Expert User Interface

View Job Queue

Queue length: 67

n U WS ED Ack Resp Cbk Repl Timeout Nodeld Description Progress Buffar

o W 020 at ‘Wakeup Slaep 2628465

1 N E o.z0 40 Clock Repart Mot delvered o recipient 2B4B1B6B NS

1 W E 020 an Schedule Change Report (schedule change machanism disablad) Mot delvered 0 recipent 28346505

1 W 020 a0 MultiCma, Clock Report, Scheaule Change Report (schedula change Response receved - ransfered 1o 28cBI 12461646113
mecnansm dsabled) ancapsuatad joba 46505

Ca'back recaived - Tansfered o
encapsuated jobs
Mot delvered 1o recipient

W = = = 020 40 Wakeup Sleep 2828485

0

1 w 020 7 Wakeup Sleep Mot delvered 1o recipient T28ABS
1] W s 020 19 SensorBinery Get 1323025
L} W s 0.20 19 SensorBinary Gat 1323025
o W s 020 19 SensorBinarv Get 1323025

Figure 7.32: Job Queue

Therefore, buttons allow accessing the device specific data of the controller and issue a Node Information Frame.
A third button gives access to the controller specific data. Most of these data is only relevant to developers.

. : This function allows updating the function of the Z-Wave transceiver used by Z-Way™ . Only
valid update files will be offered. It is possible to add so-called tokens. These is a special string used to identify
special function firmware or beta firmware. They are sued to make sure that this special firmware is only
available to those that really need, e.g. for testing.

The last block of the dialog shows the availability of the function calls on the serial APl between the Z-Wave
transceiver and Z-Way" . “Not implemented” means that Z-Way" is either not knowing about the function in-
dicated by the function ID or does not make any use of it. A red function call ID or name indicated that Z-Way" can
use this function, but the transceiver’s firmware did not report to offer this service.

Annexgives a full overview of the Functions used and supported by Z-Way™ .

7.6 Analytics

The analytics menu offers functions to troubleshoot a Z-Wave network. Details about the dialogs are provided in
Chapter 8]

7.7 Setup

The setup dialog offers various options to adapt the behavior of the Z-WAVE EXPERT USER INTERFACE :
« Language: Pick your user interface language by clicking on one of the flags.
« System Settings: This option allows setting the date format and the time zone.
« Report Problem: This option allows reporting user interface bugs. Please note that the form will transmit the
test, he option email address for questions and answers plus some internal version and status information.

7.8 Job Queue

The job queue, as shown in Figure offers some deep insight into the dynamics of the controller software. It
visualizes the (wireless) task execution of the system. Every communication attempt of the controller is queued and
then handed over to the Z-Wave chip for execution. The list shows the jobs pending and the jobs that are completed
or failed.

A legend informs about the meaning of the different flags n, U, D, E, S, and W. The timeout value counts back from
20 seconds once the job was sent. Even when it is completed, the job will stay in the queue marked as done (D) for
some more time to allow inspection. The target node ID, a description of the communication message, information
about the process, and the real bytes of the message are shown as well.

91

8 Troubleshoot the Z-Wave Network

The Z-WAVE ExPERT USER INTERFACE is perfectly suited to troubleshoot networks and find and fix problems. Trou-
bleshooting a Z-Wave network works along the lines of the communication stack.

Problems can occur on the radio layer, the networking layer, and the application layer. To identify and fix problems,
it makes sense to work bottom up through the network stack issues.

Most of the troubleshooting functions are accessible on the menu item However, this menu item will only be
displayed if the firmware on the Z-Wave chip supports some special functions needed for troubleshooting purpose.

8.1 Radio Layer

Problems on the radio layer come from interference and noise generated by defect or nonconforming electrical gear
causing electromagnetic emissions (baby monitor, old cordless phones, wireless speakers, motors, etc.). Other Z-
Wave networks with unusual high traffic can also be a root cause of problems. It is also possible that certain other
wireless networking services (first and foremost cellular network G4 routers or base stations, also called LTE) may
cause interference if they are too closed to the Z-Wave network.

The menu item [Analytics >> Background Noise] offers a view chart displaying the background noise on the two communi-
cation channels used by Z-Wave. Channel 1 refers to the 9.6 Kbit/s and 40 kbit/s communication modes, channel 2
points to the 100kbit/s data rate. Figure[8.1/shows this viewgraph. There is an obvious floor of noise with some other
“needles.” This noise floor—in Figure[8.1]at about -85 dBm for channel 1 and -90 dBm for channel 2—is the minimum
level a Z-Wave transceivers signal must surpass in order to be decoded by the Z-Wave receiver.

The lower the noise level the better the wireless situation. Noise levels below - 95 dBm are very good, levels
above -70 dBm are very bad.

Please note that this noise level is measured right on the controllers location or wherever the hardware running Z-
Way" is positioned. It may make sense to move the measuring device around to see the noise level at different
locations. Since the [Analytics)) Background Noise | viewgraph is only updated once per minute, you may want to use the
tool [Analytics) Noise Gauge |, as shown in Figure In this case, the display is updated every two seconds.

If the noise floor is too high, you need to find the source of the noise. The device running Z-Way" can be used as
mobile device too, thanks to the built-in Wi-Fi. In this case, it needs to be powered with a power bank as shown in
Figure[8.3]

Walking around with the Noise Gauge enabled may help to track down the jamming device. The closer the controller
hardware gets to the source of the noise, the higher the background noise level will be.

The “needles” above the noise floor show communication from other Z-Wave networks around. Having this is not a
real problem unless other networks generate heavy traffic. A rule of thumb is that there should not be more than 30 %
of the time allocated by traffic of other Z-Wave networks. If there is more traffic, there will be a need to troubleshoot
the other Z-Wave network first. The chart [Analytics)) Network Statistics|, as shown in Figure shows a ratio of own
traffic versus traffic seen from other networks.

8.2 Network Layer - Devices

Devices can have two faulty states:

« They are dead, removed, faulty, stolen, etc. In case of a mains-operated device, the central Z—WayTM controller
will eventually find out that the device is not responding. It will put the device in the failed node list (for more
information about failed node please refer to Chapter . The [Devices)) Status Overview | as shown in Figure
indicates if a device is failed or not. It is possible to make a test if the device is working.

« The device is working but constantly sending unsolicited messages. This is a rare but not impossible behavior.
The simplest way to find out is to consider the packet sniffer. Figureshows the [Analytis) Sniffer View| of the
Z-WAVE EXPERT USER INTERFACE .

Another option to detect faulty devices is the [Network) Timing Info View |,

Figure [8.7] shows this view. The timing information lists one entry for every communication between the controller
and the device. The number refers to the time (in x * 10 ms) the message took before being confirmed; the color gives
a rough indication of what happened:

« Green: Successful communication with device in direct wireless range.

92

8 Troubleshoot the Z-Wave Network

Channel 1

RSSI (dBm)

Time

Channel 2

Figure 8.1: Background Noise

S Device fa Network £ 0022458 AM Jobs :0
I am in MY NETWORK

Figure 8.2: Realtime Measurement of Background-Noise

93

8 Troubleshoot the Z-Wave Network

Figure 8.3: Powerbank to power the Z-Way"" controller for mobile use

Statistics

Data Rate on Sent EZZETH

Success on Reception (% ok versus % corrupted)

Foreign Network Impact [EZZESH

Figure 8.4: Network Statistics Display

94

Status

8 Troubleshoot the Z-Wave Network

@ 9:13 AM

+ 10:46 AM

+ 10:40 AM

W 913 AM

v 913 AM

Q9:13AM

Zniffer History

Date

2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13
2017-02-13

2017-02-13

Time

10:30:01 AM
10:30:01 AM
10:30:01 AM
10:30:01 AM
10:30:00 AM
10:30:00 AM
10:29:22 AM
10:28:52 AM
10:28:34 AM
10:28:34 AM
10:28:22 AM
10:27:52 AM
10:27:22 AM
10:27:01 AM
10:26:52 AM
10:26:22 AM
10:25:52 AM
10:25:22 AM

10:24:52 AM

© 10:10AM — 11:10 AM

© 10:28 AM — 11:28 AM

@ 9:59 AM — 10:59 AM
@ ~ 10:42 AM — ~ 10:47 AM

3600s

3600s

3600s
300s

V7 T036 AM
v 913 AM

+ 10:30 AM

 9:13AM

+ 10:28 AM
913 AM

+ 10:40 AM

 9:13AM

+ 9:59 AM
+ 10:42 AM

Figure 8.5: Status Page Z-Way'"

Y DEST Speed
31 -

Figure 8.6

95

Hops

Encaps

Packet Sniffer

Application

Meter Get (16)

Meter Get (0)

Meter Get (16)

Meter Get (0)

Multilevel Sensor Get)

Meter Get (0)

Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)
Wake Up No More Information ()
Wake Up Notification (

Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)
Multilevel Sensor Report (0,82,125,38)
Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)
Meter Report (33,18,0,0,0,0,0,0)

Meter Report (33,18,0,0,0,0,0,0)

O 0O O O o

8 Troubleshoot the Z-Wave Network

Node Device name Ok Last packets (in 10 ms units)

Certified Installer Toolkit 100% 2
04 Everspring Plug An158 100% 2622227222261272283242
06 Fibaro Switch 100% 2 42433253154443422324

07 ZWE Wall Switch

08 Fibaro Dimmer

10 Horstmann Thermostat
12 Binary Sensor

13 Merten-DoubleSwitch

14 Aeon Labs SE Switch 240 228 240 238 241 237 232 237 245 245 224 226 245 232 237 218 235
271 238 236

15 Duwi Blind Control

17 Binary Sensor

18 Thermostat
19 Alarm Sensor
30 Aeotec Dimmer Switch

31 Philio Motor Control 100% 2222231414 222222222217 10

Figure 8.7: Paket timing of a fresh Z-Wave network

« Black: Successful communication with device using a route.

« Red: Failed communication (after a total of nine attempts).

Figure[8.7] shows the situation in a network just installed. It can be seen that there is only communication with few
devices, e.g. no polling of sensors, etc. While this is not a problem, the chart shows that devices 4, 6, and 31 are in
direct range and all communication works perfectly well (green, low number). Device 14 seems to be a real problem
child. The controller tries all the time to reach this node but always fails. At some point in time, the controller will
accept that node 31 is dead and put him into the “failed node list”

Figure[8.8|shows a network that is a bit more complex, has more communication and is aged. Again node 20 is a defect
device that just needs to be replaced. The following interesting patterns can be seen:

« Node 5 can be reached via routes only but one time not even this worked. There was some error. It is possible
that the failure of node 20 caused his and then the system found an alternative route.

« Node 6 seems to be in direct range with very stable communication but from time to time there is a failed
communication. Since this is a battery-operated node, it is highly likely that the last communication with the
device reaches this device while already in deep sleep state. This does not harm the communication at all but
is worth monitoring.

« Node 15 switches between direct communication and routed communication. It seems to be right on the edge
of having a stable direct link but sometimes - may be when doors are open/closed - the direct range does not
work anymore.

Anyway, the controller seems to understand that direct range is the by far best option and constantly tries to
reach the node in direct range. The same pattern can be seen for nodes 29 and 31.

« Node 24 has an interesting history. For some time, there was a stable direct range communication but then it
got worse and worse to a point where communication even failed. However, the link recovered and the very last
communication was again direct, but with a slight delay of 80 ms.

8.3 Network Layer - Weak or Wrong Routes

It is the best already knowing the troublemaking devices. In this case the status of device can be checked quickly
and it is possible to dig deeper into the routing layer. Figure[8.9shows the routing table of a controller. Technically
this is not a routing table but a matrix indicating the wireless neighborhoods of devices. Nevertheless, this a good
starting point to investigate deeper. Having many neighbors is a good thing since the routing algorithm has many
options in case something goes wrong. On the other hand, just having one other route to communicate to the rest of
the network may cause trouble if this route is faulty or moved.

The next step is to check individual routes. The configuration page of every device offers a link health check that
allows testing the links from this very device to its neighbors.

While the neighborhood table shows if two devices are neighbors, the link test checks how good this wireless links

96

8 Troubleshoot the Z-Wave Network

ce name Total (pkis) Ok Last packets (in 10 ms units)
CP Decke 100% 19 4 54 7

KU CO2 97% 120 13 13 13 13 4 254 315 172 183 162 134 24 24 11 284 5 11t
KU Temp 2222220922222482364212324

CP Jal Control 47 15

CP Jal

Keller Temp

KU Decke
CP Fenster

SL Decke 7211 1951853822212227213 16

SL Schrank 154 15 4 29 19 26 6 13 10 18 4 10 4 10 20 16 6 21 65

SL Jal

Verandatiir G& 22332222232332245028922

Carport 291222122228222222221

Waschmaschine 325 294 315 283 349 301 210 302 345 297 272 343 236 346 231 !
Werkstattlicht

WO Stehlampe 50 22 43 4 19 138 4 67 120 174 226 115 39 28 9 35 10 15 26
KU Geschirr 6 4 3 88 34 15 18 20 97 141 94 271 248 42 107 33 83 61 8

Bodenjal

Jal Links 85% 9 265 477 90 55 321 7 12 455 89 88 234 8

Jal Veranda 100% 47 170 15 6 36 4 12 23 6 6 6 6 5 5 6 6 6 19 529 99

ES Stehlampe 100% 6 6 181 6 180 181 153 171 6 9 20 180 138 27 184 131 18 7 11
Windsensor 100% 21232122222222222122

Hauselektro 100% 12 40 14 2 8 2 26 6 798 3582222275

Gefriertruhe 100% 117 30 161 23 30 35 46 65 8 40 356 8 9 2 13 11 76 25 8 6

Figure 8.8: Paket timing of an aged Z-Wave network

Neighbors nfo and Neighbors

Device name Typeinfo Updated Oou ll] 12 4 6 7 8 10 12 138 14 15 17 30 31 36 3B\ 40 41 42
Master @ 2017:03-07 O Update SaSSESSEEEEEEEEEES
Static PC Gontrollr.2 @ 2017-03-07 Owete @ S ESESSSSSEEEEEEEE
Everspring Wall Plug - Switch Tubelamp 2017-03-07 Owe BH S SEEEEEEEEEEEEENR
Fibaro Wall Plug - Ventilator 2017-03-07 Owee EEE GSESESEDEESESEES
Z-Wave.Me Flush-Mountable Scene Switch 2017-03-07 Owee EEEE SSEDEDEESESEES
Fibaro Roller Shutter 2017-03-07 Owee EEEES SEDEDEESESEES
Hostmann Heating 2017-03-07 Owee EEEESE SESESEESEEEES
Fibaro Motion Sensor - 2017-03-02 o EEEEESEE SESEEEEEEESR
Merten Wall Insert 2017-03-07 Owe: EEEESESE SSEESESEES
Aeon Labs Smart Energy Switch 2017-03-07 Owe: EEEESESEE BDEESESEES
Duwi Insert blind control 2017-03-07 Owee EEEESESEEE SESESEES
Philio Motion Sensor - 2017-03-02 O Update . - . - . - - . . . - . -
Aeotec Bulb - Lamp 20170307 Owee B SIS SSSEEE SEEEEES
Philio Blind Control 2017-03-07 O EEEESESESEEEE EEEES

Figure 8.9: Neighbor-Table of a controller

97

8 Troubleshoot the Z-Wave Network

® Interview ¥ Configuration «3 Association €5 Link health Expert commands X, Firmware updat]

(#8) CP Jal v

Link to node Device name Device type Date Link quality O Test alllinks

CP Decke L4 8:30 AM O Test link

CP Fenster ¥ 8:31 AM O Test link

SL Decke W 8:30 AM O Test link

SL Schrank 8:31 AM O Test link

SL Jal 8:30 AM O Test link

Bodenjal 8:31 AM O Test link

Christian 8:30 AM O Test link

Wohn Jal 8:31 AM O Test link

FibaroSchwipp 8:30 AM O Test link

© 2014 by Z-Wave.Me

Figure 8.10: Link test of a node

is. Unfortunately, not all but an increasing number of devices on the market support this link test. Figure [8.10]shows
this dialog within Z-WAvE EXPERT USER INTERFACE . Every link has a color indicator (green = ok, red = bad, grey =
unknown) and a time stamp that shows when this test was done the last time.

Please note that the link check is a momentary analysis only and does not give any information about the history of
the link quality.

8.4 Application Layer Settings

In the application layer, there is usually no malfunction of a device but wrong configurations. Z-WAVE EXPERT USER
INTERFACE allows changing and monitoring the values.

8.4.1 Polling

Heavy polling of devices causes network traffic leading to delays. A simple look on the sniffer as shown in Figure|[8.6]
reveal if there is too much polling.

8.4.2 Dead Associations

Association enable direct communication between devices. In case there are more than one device in an association
group, they will receive a command one after each other. A very common problem is that associations are set during
the built-up of the network and later certain devices are removed or simply fail. If this disappeared node is still in an
association group, the device will always try to communicate to this node first before communicating to other nodes.
The result is a delay. The device-specific configuration overview as shown in Figure[8.1T] displays all association that
are set. It is possible to recall the current associations from the device and to remove or set associations.

8.4.3 Wrong Wakeup Settings

Wrong wakeup settings may either result in too much traffic draining the battery, or in too slow response to sensor
update requests or configuration changes. The status overview page as shown in Figure[8.5gives a simple overview
of the wakeup settings of the different battery-operated sleeping devices. The device-specific configuration settings
allow changing these settings. Besides the wakeup interval, the setting also allows setting/changing the Node ID of
the controller holding the mailbox of this device. This setting must reflect the correct situation in the network.

98

8 Troubleshoot the Z-Wave Network

 Interview £ Configuration «¢ Association €5 Link health Expe

(#17) Philio Motion Sensor =~ W
€21 Update from Device

Association Group 1 (maximum 7 devices) | © 2016-09-08

Awyzway % | A x

Association Group 2 (maximum 7 devices) | © 2016-09-08

Ay z-way %

Legend

Selected in Ul but not active in device yet
Active in device but not selected in Ul
Selected in Ul and active in device

Figure 8.11: Association Dialog in Z-WAVE EXPERT USER INTERFACE

8.5 Summary

Table 8.1 summarizes the possible “10 root causes of Z-Wave network problems” and suggestions how to fix them.

99

8 Troubleshoot the Z-Wave Network

No. Cause How to find ? How to fix ?
1 Noise by other transmitters Background Noise Chart Find them and turn them off
2 Noise by other Z-Wave net- | Background Noise Chart, | Talk to the neighbor ;-)
works Network Statistics
3 Faulty devices Status Page, Failed Node Remove them or replace
them.
4 Crazy Devices (always send- | Sniffer Remove them or replace them
ing)
5 Weak Link Neighbor-Table, Link Health | Add more routing nodes,
in Configuration Page move devices
6 Heavy Fading Timing Infos Network Reorganization,
more devices
7 Wrong Routing Timing Infos Network Reorganization
8 Wrong Polling Sniffer Change and Save
9 Wrong Wakeup Intervals Status Page Change and Save
10 Dead Nodes in Assoc. Groups | Association display in Con- | Change and Save

figuration Page

Table 8.1: Troubleshooting on Z-Wave networks

100

9 Extending the systems beyond Z-Wave

9.1 IP-Cameras

IP cameras transmit a video stream that can usually be accessed having dedicated mobile apps. Under certain cir-
cumstances it is possible to have the very same video stream in parallel within the Z-WAy SMART HOME INTERFACE.
All Z-Way™ user interfaces (Web Browser and native apps for 10S and Android) are based on off-the-shelf HTML
rendering engines supporting standard video and image formats. To display the video stream of a certain camera this
stream must comply to commonly used public standards, such as MJPEG.

Certain cameras however use proprietary video encoding that can only be decoded by special native mobile apps
of the manufacturers. These cameras can’t be supported by Z-Way™ .

9.1.1 How to find out if a camera is supported by Z-Way" ?

1. Check the manual if MJPEG is mentioned as encoding method for the video stream.
2. Check if there is a way to access the video stream using a standard web browser such as Google Chrome or
Microsoft Internet Explorer.

9.1.2 How to prepare for integration?

To integrate a camera into Z-Way'" , this camera needs to be setup first following the guidelines given in the manu-
facturers manual. As a result, there must be

« A login name (examples are “admin” or “user”)

« A password for access (this usually needs to be setup

« The IP address of the camera

9.1.3 How to find the IP address of the camera?

Most IP networks in private homes and offices assign IP devices a new IP address using the DHCP protocol. The
router holds a list of IP addresses and will arbitrarily choose one address from the list to the new IP device. Even after
a reboot this address will remain the same. If the setup process mentioned above does not reveal the IP address there
are two common ways:
« Log into your IP routers user interface. Usually this interface will display all IP addresses assigned together
with a name and/or type of the device.
« Use an IP address scanner on your PC or notebook that will tell you all IP devices active in a network plus the
type of IP device they ae assigned to. A valuable tool for this is called “Angry IP Scanner” available for all PC
platforms such as MAC OSX, Linux or Windows. It requires a Java Virtual Machine (JVM).

9.1.4 How to integrate the camera into Z-Way " ?

The Z-Way SMART HoME INTERFACEallows adding new devices. Log into the user interface of Z-Way'" , click on the
setup menu (icon on the upper right side) and click on menu item (Add New Device] . You see the dialog as shown in Figure
Now choose the IP camera symbol line and click (4] .

Now you will find a list of IP camera types plus one generic IP camera option called "WEB CAMERA’. This dialog is
shown in Figure[0.2]

If you are lucky, the name of your camera is already on the list. If not, you can check in the app store if there is a
new support app available for your camera type. Go to [SetuP>> App >> Online AppS] and filter for 'VIDEO SURVEILLANCE.
Figure[9.3|shows the app store with camera filter.

If you find your camera type, just install the app and redo the steps above. Now you will find the new camera in the
list to choose from.

Once you click on the camera of your choice there will be a setup wizard asking you as a minimum for the IP address
of your camera, the login name, and the password. Therefore, you need this set of data from the setup process of your
device.

101

9 Extending the systems beyond Z-Wave

O M &

Please select device type

fOWA\r: G + @

o + [

Figure 9.1: Inclusion of predefined cameras

Z-WAVEIME | & 0 | o133055 o
[
Q) FosCam FI9805 -~
5
= FosCam FI9821 <
3
f
~ FosCam FI9826 ~
L
FosCam F19828 &
L 4
a PoppCam F 4
© visaGam &~
Bl

e Web Camera *

Figure 9.2: Generic camera module

Z-WAVEIME | @& 0D M oissae E

& Local Apps A Online Apps @ Active

I T Video surveillance (s) I 2 Newest

Video surveillance

Trendnet TV-IPESTW »
. o | &T73x & Cror | & 280x

RaspberryP| camera module »

Edimax » . EdimaxCam »

r | & 36x

I+
"
4
[]
[3

"'. TVPIP320PIV1 »
S 7 | & 178x "

Figure 9.3: More camera support in App Store

102

9 Extending the systems beyond Z-Wave

Z-WAVE)ME & D 8 o134054 o
Local Apps @ Online Apps @ Active
TAlApps s |3 Name ASC Q
Featured Apps
24 Hours Device History » @ 1f -> Then »
¢
+ @ +
[O] FElemems Console Sources Pe“olmance Memory Applieation Security Audits HEY
® O W YT vew = = Preserve log @ Disable cache Offiine No throttling v
Ragex Hide data URLs XHR JS CSS Img Media Font Doc WS Manifest Other
Na.. M. St. Ty. initat. Si. Time waterta 20000ms 300.00ms 400.00ms 500.00ms 600.00ms 700.00ms §00.00ms 90000 4
8 ieG.. 20, 6 29ms |
e G.. 20, Other 9. 46ms -
et G... 20. Other 3. sams _
g et G... | 20, Other 4, 55me [
u i G... 20. ther 1. oims e
8] i G 20.. ther 8. 57ms ——
0 iet G... 20.. Other 8. &1ms L]
ot G.. 20, Other 2 66ms |
o ict G... 20. Other 8 52ms .
0] i G.. 20, -] a9ms _—
o i G... 20. Other 9. 45ms -
o G... 20., Other 5. 40ms -

55 requests | 658 KB transfemed

Figure 9.4: Web browser debug interface

9.1.5 How to support a camera not on the list yet?

If your camera type is neither on the list of preset cameras nor there is a new app in the online app store there is still a
very good chance to get your camera integrated. However now there is more work needed to find the right commands
controlling your camera. In this case, you will need to choose the generic camera type “Web camera,” which requires
the same set of information (IP address, login, password) but more than that.
Note: This work requires some basic understanding of web pages, IP, and URLs. The generic web camera allows defining
the URL to the video stream and—if the camera has these capabilities—links to tilt, turn, night vision control, etc.
To find these URLs, you need to log into your camera using a generic web browser. We strongly recommend using
Google Chrome because of the debugging capabilities. The following explanation assumes the Chrome browser, but
other browser will have similar functions.
1. Open the JavaScript Debug console. You find this option on the browsers menu under [View) Developer|. Figure
-4 shows the web browser with debugger active.
2. Once the debugger is open pick the menu item of the debugger (see image below”
3. Now you use the cameras web interface for accessing the image/stream, tilting, moving, etc. Whenever you do
this the URL needed will be sent from the web interface to the camera and becomes visible in the debugger.
Take these URLs and copy them into the setup interface of "WEB CAMERA’. The camera control in Z-Wave
will call the same URL for control.

9.2 433 MHz devices

9.2.1 Introduction

433 MHz wireless communication is an outdated wireless technology. It is single direction wireless communication
only without confirmation of received packets and it does not have any security functions. It is not standardized and
subject to jamming by other devices since 433 MHz is a non-regulated frequency range. However, it is still used is
many low-end alarm and control systems and there is a quite large install base in the market. The biggest advantage
of 433 MHz devices is its low price.

Due to its one-way wireless connection, sensors can only report values and actuators can only receive values. Unfor-
tunately, there is no regulation in the frequency band. Every supplier has its own code set for actuators and sensors.
Typical suppliers of 433 MHz devices are Intertechno, Conecto, Mumbi, Homeeasy, Elro, Teldus, Brennenstuhl, Olympia
and others.

103

9 Extending the systems beyond Z-Wave

Figure 9.5: Popp 433 MHz Gateway

9.2.2 433 MHz Gateway

In order to support 433 MHz devices special gateways are required. Z-Way™ has built-in support for the 433 MHz
gateway from Popp. Figure[0.5]shows this gateway hardware. The device is powered by an external standardized mini
USB port and can be connected ot USB wall outlets, mini USB power supplies, etc.

Once configured and connected to the Z-Way"™ System, this gateway allows to learn different code sets of different
manufacturers. It can therefore be used universally for all kinds of 433 MHz devices from different manufacturers
even if there is no detailed technical description of the code set used.

Z-Way"™ can support multiple Popp 433 MHz gateways when one single gateway cannot cover the whole home. The
Popp 433 MHz hub is connected to Z-Way" using Wi-Fi. This means that there must be at least one Wi-Fi network
to connect the 433 MHz and an IP connection to the Z-Way™ system (not necessarily Wi-Fi but cable Ethernet is
possible too if there is a router between the cabled ethernet and the Wi-Fi).

9.2.3 How to setup the 433 MHz Gateway

First, install the app ’RF433’ from the online app store. For more information about the online app store, please refer
to Chapter[q

Activate the RF433 app as shown in Figure[9.6] If you like you can change the operating IP from 8000 to any other IP
port number available. However, its perfectly fine to keep it at 8000. Once the RF433 app is running on your Z-Way"™
system you need to setup the 433 MHz gateway.

Power Up the 433 MHz Gateway

Place the 433 MHz connector on the place of choice and power it using a standard 5V USB power supply. Push the
central button until the LED slowly blinks in purple indicating that the device is in configuration mode serving its own
access point.
In this mode, the gateway acts as access point creating its own Wi-Fi network. The SSID of this Wi-Fi network is
gw433-xxx with xx as some individual serial code.
You need to connect to this Wi-Fi network using any Wi-Fi capable device available (e.g. mobile phone, notebook,
etc.). Now start a web browser on this device and open the page

http://192.168.4.1
to access the configuration interface as shown in Figure[9.7] There is no password needed.

Configure the 433 MHz Gateway

Click on to access the setup dialog as shown in figure 0.8}
« Wifi-Settings: Choose the SSID of your Homes Wi-Fi. This is the Wi-Fi that establishes the IP connection

between the 433 MHz Gateway and the Z-Way " controller. You can scan for available SSIDs. In case the Wi-Fi

104

http://192.168.4.1

-
F RF433
@ Description
AXIMME B8 Peripheriegerite
& Z-\Wave Me
@003
o Akiiv
Marme
RF433
Port
000

0 Fort

Gateway Connecled

Shiows connection status

9 Extending the systems beyond Z-Wave

Figure 9.6: RF433 App Setup

192.168.4.1

433MHz Gateway

CONFIGURATION

FIRMWARE UPDATE

POPP

Figure 9.7: 433 MHz gateway web interface

105

9 Extending the systems beyond Z-Wave

& Tl 50 m 14:49

1. Wifi-Settings
ssID: |

Password: |

Scanning...

REFRESH

DHCP: Active]
If no DHCP available
IP:

Gateway:
S

2. Hub Server
1P

Y I
Port: [

Figure 9.8: 433 MHz gateway setup dialog

106

9 Extending the systems beyond Z-Wave

Z-WAVE)ME @& 0D | # |eo1s0820 o

Please select device type

fomw; (' Manage with ExpertUl |+ Addnew (% Manage
n +Addnew [# Manage
p 4+ Addnew [# Manage

H\G}J 4+ Addnew [£ Manage

Figure 9.9: 433 MHz option in "Devices’

network selected requires a password (or WPA key) enter this key as well.

« DHCP Active: In most case the Wi-Fi you connect to will run DHCP for automated IP address assignment.
Only if you know for sure that there is no DHCP you need to setup a fixed IP address plus network mark plus
gateway.

+ Fixed IP Settings: This setup is only needed if there is no DHCP service on the Wi-Fi selected.

« Hub Server/Port: Here you need to configure the IP address of your Z-Way" controller and the IP port address
chosen during the setup of the RF433 app on Z-Way" .

Activate the connection mode of the Gateway. The local Access point will be deactivated and the gateway connects
(1) to the Wi-Fi and through the Wi-Fi to the (2) Z-Way™ controller. Success is indicated by blinking of the green
LED.

You can always return to the configuration mode by a long push of the central button on the 433 MHz gateway. In
this case any connection to the Z-Way™ controller is deactivated and the local Wi-Fi with SSID gw433-xxx is active
again. Here again the different LED codes of the Popp 433 MHz gateway:

« blue blinking: Configured but searching for connection to Z-Way" controller

« purple blinking: Gateway is in initial configuration mode. Connect to Wi-Fi APN gw433-XXXX and call URL
http://192.168.4.1 for initial configuration

« green permanent: connection established

« green short blink: communication from/to gateway

Teach In 433 MHz devices

Once the 433 MHz gateway is configured corrected and is connected it is possible to teach-in 433 MHz devices. A new
section of devices will appear on the “Device” overview in the setup menu of the user interface as shown in Figure
After clicking the button choose the type of 433 MHz device to teach in:

1. Binary Sensors such as door sensors and motion detectors

2. Remote Controls

3. Actuators like Smart Plugs
While Sensors and Remote controls only send out commands the actuators receive commands only. To teach them
into the system a little trick is needed. Each Smart Plug or other actuator comes with a small remote control sending
exactly the commands expected by the actuator. In order to control an actuator, the associated remote control is
required to issue commands that can be captured by Z-Way™ .
The remote control itself is handled in the same way. The only difference is the way the elements are created.
Once device type is selected and the teach in process has started, all the buttons of the remote control must be pressed,
one after each other. Figure[9.10[shows this moment. The pulse train of the button commands are shown in the tech-in
dialog and the number of the remote-control buttons can be assigned.
For Actuators the same process applied, but the status of the actuator needs to be assigned to the pulse train.
Another specialty concerns binary sensors. Some 433 MHz sensors send signals on open and on close. However, some
other sensors only create one wireless command when the sensor trips. For alarm systems, this is enough but for
Smart Home with User Interfaces this is not working since the element cannot show the actual status. For these
kinds of sensors, there is an automatic switch back to off function after a defined time interval. Figure
Once all pulse trains are captured, the new element need to be renames and assigned into a room.
The management function for 433 MHz devices allows accessing the setup and change it as shown in figure[9.12]

107

9 Extending the systems beyond Z-Wave

Teach-In device

o Select device typ

Select device typ to continue. Remote control ¢

o '+ Ready to Teach-In 2SS Re T o

Pulse train Remote control button Received pulse trains count Action

o 0100020200020002000¢ 1% 1 A Test = Remove

LaJe=U"ll Save and manage RF433 device >

Figure 9.10: 433 MHz teach in

Teach-In device

o Select device typ

Select device typ to continue. | Binary sensor &

o '+ Ready to Teach-In % ETE R)

Pulse train Oon off Timeout for auto off Received pulse trains count Action

e 0100020200020002000¢ ° 30 1 ATest = Remove

LYWl Save and manage RF433 device &

Figure 9.11: 433 MHz teach in of a binary sensor

4ta Teach-In

7 Manage
RF433 Device: Tur (#RF433_sensorBinary_2)
Pulse train On off Timeout for auto off Received pulse trains count
0 o 30 3
0 o 30 3

O'IT.lr
e

v Move all elements to room

-~

Figure 9.12: 433 MHz device management

108

9 Extending the systems beyond Z-Wave

Figure 9.13: Popp EnOcean USB Stick

EnOcean Network Access

ﬁ App 1Dx Encsan | instance I0; 4

Hama

Iy EnDosan SSok

Dascription

Adcws accessing EnDoean devices from attached EnDosan transcesver

% Sarial port o EnQcean dongle

O LB TYOS800

e Intarmal nae
g
O Shanuicl e & vakd JS ey srng. Dot changs unisss you knaw whast ou re ooing
W Euitsls EnCkeiin AP
A Hanchier HTTP racpussts bo Enlicesrs™ and Tolcman'®

o Al gkl dctws o Badcen AP

Figure 9.14: EnOcean App configuration

9.3 EnOcean devices

EnOcean is another wireless communication technology optimized for very low power consumption.
Z-Way " has implemented support for EnOcean devices but limits its function to sensors and wall switches because of
their battery-free and therefore maintenance-free design. Compared to Z-Wave, EnOcean is a quite simple protocol.
There is no such thing like network inclusion or routing—every EnOcean device just sends out a specific datagram
that includes a unique device id and the data (sensor values, switch status) of the specific function of the device. The
encoding of these data is defined in so-called profiles. These profiles are identified by a three-byte value but they are
not transmitted wirelessly. Hence the user must decide from his product knowledge what profile a certain device is
using. The EnOcean receiver will use this information to decode the datagram and use the data. (This means that a
wrong decision about the profile of a EnOcean device will lead to severe malfunctions of the system).
Every EnOcean receiver in proximity will always receive every datagram sent by a transmitter. This leads to two basic
management functions of the EnOcean module:

1. select the right products (by their unique 4 Byte ID) to use—and ignore all others

2. define the correct profile by selecting the right product
To work with EnOcean devices, an EnOcean USB Stick is required. Please use the Popp EnOcean Stick (POPE12204)
as shown in Figureand plug it into the USB portﬂ
Next, the EnOcean app must be installed from the app store and configured as shown in Figure[9.74]
Make sure to pick the right device name of the EnOcean USB Stick connected to your hardware. For Raspberry Pi-
based platforms this is always but for other platforms this may be different. The internal name, “zeno,”
can be arbitrarily chosen. In case more than one EnOcean stick is operated this name needs to be unique.
Now it is possible to “teach-in” new products using the user interfaces “Device” section |Configuration)) Device) EnOcean |,
As described above the first step is to select the right product. A list of manufacturers with their products are given
to select from. Please note that the EnOcean module may support many more devices from other manufacturers as

10ther EnOcean sticks may work as well, but the correct function is not supported and they may stop working after Z-Way™ firmware updates.

109

9 Extending the systems beyond Z-Wave

ocean
Teach-In
- R PTM215 - two rocker (four channel)
q)

)‘l
TN
oo

Universal Switch Insart 4C

o 4.2 Ready to Teach-In, Hit one rocker R uari

o Settings

Figure 9.15: EnOcean Teach In

ocean
Teach-In

€ PTM215 - two rocker (four channel)
A g

) "‘\\J\
=

Universal Switch Insert 4C

° " New Device has been installed and is ready to be used

Settings

o Left Rocker
o o Right Rocker

Right Rocker

Figure 9.16: EnOcean Device Configuration after Teach-In

long as they have the same profile. A good example for this is a door window sensor (profile name D5-00-01). Multiple
manufacturers off door-window sensors, some even in the same enclosure but some in slightly changed enclosure.
Their EnOcean wireless capability is however similar.

You may find the profile name on the label of the unknown device or documented in the device specification of the
manufacturer.

Please not that without proper knowledge of the device and its profile it is impossible to operate the device!
After selecting the right device, the user interface asks for the teach-in process as shown in Figure[9.15] During this
process, the new device must send out one datagram containing the unique ID. The user interface will give some hints
how to generate such a datagram.

Once this datagram was received, the EnOcean module will generate virtual devices according to the profile selected.
You can change the names of the elements to be generated. Figure[0.16]shows this dialog.

Finally, as shown in Figure[9.17] one or multiple elements will appear in the elements view. One example of the wall
controller device shows Figure[9.18]

The menu option also offers a special interface to manage EnOcean devices as shown in Figure This
dialog offers a list of all known EnOcean devices with an option to change the profile. Furthermore, it is possible to
manually select one of the valid profiles of EnOcean for a device not known to the standard user interface. Please note
that profiles not known to the standard Ul are also not supported by the standard user interface and will not leads to
creating new Ul elements. However, the device is still created in the APl and can be used by third-party software.
For a list of all supported EnOcean devices, please refer to Annex|F] Experienced Users and programmers may extend
this list by adding their own profiles to Z-Way™ . Chapterdescribes how to do this.

110

9 Extending the systems beyond Z-Wave

Z-WAVEXME & 28 = 0120740

o o
Left Rocker Right Rocker
on off

Figure 9.17: EnOcean Device Elements

~

<=

enocean
O Controller info (& Manage & Teach-In

+ Rocker Switch, 2 Rocker (#b324fdfe) £ Configuration %

Figure 9.18: EnOcean Device Management

9.4 Other IP/Internet-based services

Z-Way " can work with external IP-based systems. Please refer to the app store description for more information
about how to integrate third-party IP-based devices. Please refer to Chapter[g|for details.

111

10 Customize your system

10.1 Skins

Wouldn’t it be cool to have your own individual user interface controlling your own individually designed Smart
Home? Z-Way" offers you exactly this feature—it is called Skin’. The Skin is a software package redefining all visual
elements of your mobile and browser interface including images, fonts, colors, wallpaper, etc. Figure[10.1shows the
menu option for customization on the setup menu in the user interface.

Designing a new skin from scratch is a lot of work. It is easier to choose an already existing skin. Go to
>Management >> Customize] and activate a new skin. You can also download skins from the online server.

10.1.1 Step 1 - Do you own Skin

A skin consists of a set of images and a description file for fonts, colors, etc., called CSS (Cascaded Style Sheets). See

Annex A for links to more information about CSS.

The starting point for a new skin is a blank template you can download from
http://github/z-wave-me/Skin-blank

This file is a zip archive you need to unzip into a temporary folder. This folder contains two sub folders:

. : This is the blank skin template including the CSS file main.css, a screenshot image for the selection
in the store and a subdirectory with all the images needed for the skin.
. : This is the source code to generate the main.css—more on this magic later!

10.1.2 Step 2 - Do your own Images

Images are a central part of any skin. As shown in Figure[10.2]the /blank/img subdirectory contains two sub-directories
and two files:
. : The images of all the different elements. Please be aware that some element types like dimmers have
three, some have two, and some have only one icon. The names of the icons are self-explaining.
. : This contains the logo displayed on the upper left side of the screen and the wallpaper.

« main.css: This is the cascaded style sheet you will need to edit.

« main.css.orig: This is your safety belt. In case you mess up your main.css here you have the original as backup.
« Screenshot.png: The preview image for selecting a skin

« Wallpaper.png: the wallpaper of the User Interface

& Apps >
& Devices >
Rooms >

Caean

& My settings >
/~ Management >
(% Logout >

Figure 10.1: Skin Setup

112

http://github/z-wave-me/Skin-blank

10 Customize your system

v blank
v img
e icons
[lego
| main.css
B main.css.orig
screenshot.png
wallpaper.png
README.md
v sass
> common
v config.rb
| main.scss
modules
responsive
skins

y¥v¥@IT{@rs

vendor

Figure 10.2: Skin directory structue

There are plenty of tools to redesign and change images. This short write up will not explain this in detail but the
Internet if full of resources for image editing. Just a few remarks:

«+ Use exactly the names of the icons as they are provided in the blank skins. Otherwise, they will not be used.

« Icons should be 64x64 pixels. Make them as small as possible allow fast loading
Hint: The easiest change of a skin is just to replace the wallpaper image by something individual.

10.1.3 Step 3 - Test the new Skin

A quick way to test a new skin is to load it directly to your Smart Home gateway running the Z-Way™ controller
software. This is possible for all Z-Way™ installations running on a PC (Linux, Windows) or on a Raspberry PIl. Z-
Way" installations on other “closed” boxes such as Popp Hub are not suited for such a quick test drive—sorry!

First of all you need to choose the “Default Skin” in your Z-Way SMART HOME INTERFACEON [Setup)) Management)
. Only the Default Skin can be changed in the quick way described below.

Then you need a way to copy files of your new Skin on the Z-Way™ installation. This can be done using simple file
copy (when developing on the PC running Z-Way"") or using FTP. You can replace all images by copying them into
the folder.

/opt/z-way—-server/automation/storage/images/

One exception is the wallpager.png which is in the folder
/opt/z-way-server/htdocs/smarthome/app/css

like the main.css that holds all other settings.

Once a new file is changed or uploaded reload the Ul on your browser or restart your native app, and voila, your

changes are visible.

Hint: To test a new wallpaper, just copy your file of choice to
/opt/z-way—-server/htdocs/smarthome/app/css/wallpaper.png

and reload the page.

10.1.4 Step 4 - Change colors, fonts, shapes — almost

Colors, fonts, etc. are all controlled by the file main.css. Open this file in a text editor and you will be shocked by the
about 10.000 lines of code. If you are a CSS pro you may be able to edit this but this is not the recommended way to
do this. CSS is great tool for shaping web pages but it has much legacy that makes it hard to edit manuals. However,
if you really like to go that route Annex B will provide you some hints where to find the important lines of code. Use

113

/opt/z-way-server/automation/storage/images/
/opt/z-way-server/htdocs/smarthome/app/css
/opt/z-way-server/htdocs/smarthome/app/css/wallpaper.png

10 Customize your system

at your own risk—you are warned.

10.1.5 Step 5 - Going into the SASS world

SASS is a preprocessor for generating CSS files. It extends CSS syntax and adds a few very useful functions such
as central variables. This and a few other advantages caused many web designers moving away from writing CSS
directly but using SASS.
The disadvantage is that you need to have another software on your developer PC translating the SASS files into the
final CSS (main.css). Annex B provides some links to SASS tutorials and to some tools to translate from SASS into
CSS.
We recommend the tool “Scout” because it works equally well on Windows and on MAC, is well documented and
does most of the magic automatically.

« Download Scout from http://scout-app.io/ and install the tool

« Watch the movie

www.youtube.com/watch?v=Fju3aXWozLM&feature=youtu.be

for instructions on how to set up and use Scout.
Few Hints:
« Start Scout and setup as shown in the movie. Point to the folder /sass as source folder and to the final folder of
your skin as destination.
+ The generated main.css file you can upload to your test box as described above. Whenever you change a SASS
file the Scout application will detect it and automatically update the generated main.css. Then you can upload
the main.css to your test controller.

10.1.6 Step 6 - Changing SASS

Finally we come to the point of making a real new Skin by changing the layout, color and font definitions of the blank
skin. For this you need to edit the sass files provided with the blank skin. The central sass file is main.scss. It does not
contain any layout definitions but loads all the other needed files only. The idea behind sass is among others to have
different functions separated into different files. For the Skin in Z-Way™ however 98 % of all changes will happen in
only one file - /common/_variables.scss. This file contains all major definitions for colors, shapes, sizes, fonts, etc.
Hint: A first run should be like:

1. Change an important color, e.g. $app-color-primary: #000000;
Save the file
Watch Scout compiling the change and updating main.css
Uploading the new main.css to the test box
Reload (and empty cache I!!) the web page and see the result

Gk wN

10.1.7 Step 7 - Create the final Skin for friends, family and the public

In order to create a final skin file, a few more work needs to be done.

Create a preview image

Just make a screenshot of the new skin as preview. For the skin selection in the Z-WAy SMART HOME INTERFACEthe
screenshot must be stored in the folder skinname/ and must be named screenshot.png Recommended dimension for
this image is 300px X 150px.

Collect all files together

You need a folder with the name of the skin. This contains the screenshot.png, the wallpager.png and the main.css
plus the subfolder (img that has two further subfolders /logos and /icons)

114

www.youtube.com/watch? v=Fju3aXW6zLM&feature=youtu.be

10 Customize your system

& Modules

L]

%% Users

i

Figure 10.3: Go to menu Skin

I-WAVEIME & o
Thie Version Wi version Created

TT . Red Biood SmartHome Them 1 130 144 2 # ¢+ 2
KOA%A 5 1 1 144 & 7 ¢ »®

= 1] 1454 2 4 ¢ =
Edani Asial Skin 1 1 1 ! L & ¢+ x

Figure 10.4: Upload new Skin

myskin
*— main.css
+— myskin.png

+— wallpaper.png

— img
logo/*.png

icons/*.png

Pack the files

The whole folder needs to be packed now using ZIP archive program. On MAC please make sure to use the ZIP
command line and not the built-in compression tool of the finder. This will not work. Move inside the folder of your
skin (example above is /myskin) and execute “zip -r -X myskin.zip *”

10.1.8 Step 8 - Distribute your Skin

If not done yet create your personal account on the https://developer.z-wave.me/

Go to Menu -> Skins as shown in Figure

Click on the “Upload new skin” button as shown in Figure[10.4]

Select a packed skin from your PC as shown in Figure

Skin will be automatically uploaded. If an upload process is successful an update form is shown. In the form
activate skin, enter title, Ul version, Skin version, description, author name, homepage and upload a skin image.
Click on update.

Gk wbh=

10.1.9 Step 9 - Rewind in case something goes wrong

For sure you will end up with skin attempts that don’t work well. In a worst-case scenario, you can’t even pick a
different skin anymore and your default Skin was messed up. For such a case, there is an emergency reset Just call

115

10 Customize your system
Z-WAVEIME 3 o

Skin: Blank
| Active

“Title

“Ul version

*Version

Figure 10.5: Select the packed Skin

the URL
http://IP:8083/ZAutomation/api/vl/skins/setToDefault

10.2 Icon Sets

It is possible to add individual icon sets to the Z-Way™ and share it with others.

10.2.1 Create Your own lcons

First to the icon as such. They must have a size of 64x64 pixel and must be encoded in PNG image file format. You
are free to make every icon you can imagine. Please note that there is a list of typical devices where standard icons
are applied:

« battery

« heating

« motion

. energy

« water

. gas

« switch

+ smoke

« door

« window

. light

« media

« blinds

« cooling

« co

« fan

« flood

« thermostat

« luminosity

« humidity

« temperature
Please note as well that certain elements need two or even three icons to indicate different status of their operation.

10.2.2 Create an Icon Pack

It is certainly possible to just replace the icons right in the User interface exchanging the file in the filesystem on
/opt/zway-server but there is a much better way. Icons should be grouped into icon sets and should be placed on the
server to be available for all Z-Way™ users. The grouped icons are called icon packs.
An icon pack is essentially a gz or zip archive file containing different icons. All icons need to be stored in a subfolder
with the name of the icon set. The archive must then have the very same name. Only store the icons in the archive
and not the subfolder itself! or Unix OS these commands will work:

1. cd /icons/youriconpack

116

http://IP:8083/ZAutomation/api/v1/skins/setToDefault

10 Customize your system

L S
~
o (o]][] (e [

Figure 10.6: Select the Icon pack

Icons: New Smarthome-UI - Icons
v hotwe

Update icons
Fiarame:tatcansa oz

Datei suswibien | <01 asgonnt
Upload screenshot

Datai suswahlen | kes susgent

Icon previews v

Figure 10.7: Manage an Icon pack

2. tar -cvzf youriconpack.gz *
The total size of the archive must not exceed 2 MB.

10.2.3 Upload your Icon Set

For this please register at
http://developer.z-wave.me/.
Once logged in, the right-hand side menu icon allows opening the icon set management dialog as shown in Figure
[10.6]
Here you can create a new Icon pack record and manage you existing ones:

Please choose the title of your icon pack and provide a screenshot. This is the image shown in the icon set preview as
described in Section [£.2.3]

10.3 How to translate the Z-Way" to your language

Z-Way " operates with two different user interface both having its own translation engines and translation files.

Additionally, the backend code will translate certain tokens already when handling the data. Finally, the applications

from the app store may need to be translated as well.

You can call all relevant files from info@zwave.me or download from GitHub
https://github.com/Z-Wave-Me/zwave-smarthome/tree/dev.

You can also use the installation of Z-Way™ on your system if you have access to the file system. The following

tutorial assumes you have this access. This also allows you to translate the strings and subsequently test the new UL.

All Z-Way ™ code you find in the folder and subfolders of /z-way-server.

Please note that you can include your name, email, and company web page link to both Uls as a reward for doing the
work.

10.3.1 Smart-Home User Interface

All translation tokens for the Smart Home Ul can be found in /htdocs/smarthome/app/lang. Just copy the file en.json
to XX.json with XX as I1SO 2 char code of your language. Start translating the new file into your language.

In app/config.js find a language list array “lang_list™: ['en’, ’de’, ’ru’, ’cn’, ’fr’]. Just add your 2-char code. In / htdocs
/smarthome/app/images/flags the flag of your country/language needs to be added. The code expects the file name

117

10 Customize your system

XX.png with a 24x24 pixel PNG image.
For the standardized form dialogs of the application setups you find the language tokens in app/core/config.js. The
array “lang_codes” need to be extended by your language.

10.3.2 Expert User Interface

All translation tokens for the Smart Home Ul can be found in /htdocs/expert/app/lang. Just copy the file en.json to
XX.json with XX as ISO 2 char code of your language. Start translating the new file into your language.

L)

In app/config.js find a language list array “lang_list™: [’en’, ’de’, ’ru’, ’cn’, ’fr’]. Just add your 2-char code.

10.3.3 Backend Code

The subfolder /translations contains some XML files that are required for backend actions and rendering. These
renderings are done in the backend and used in both Browser Type User Interfaces. The main files to extend with own
language are:
1. ScalelDs.xml: Contains the scales for multilevel sensors. These Scale Strings are displayed on both Expert Ul
and Smart Home Ul whenever a sensor value is shown
2. Alarms.xml: Contains the Strings for the various Alarm types of Z-Wave. These strings are used in Expert Ul
and for the initial device name in Smart Home UL.
3. ColorCapabilities.xml: Contains the types of color settings. This is used for the initial device name in Z-Way
SMART HOME INTERFACE.
To alter and extend these files, please find out the ISO 2 char code of your language and add one line for each token.

10.3.4 Submission of your Language Pack

Please send the translated language files XX.json plus your flag plus any changed XML file zipped to info@zwave.me
for inclusion into the next release of the software.

118

11 Develop Code for Z-Way"

11.1 Z-WayTM software structure overview

Z-Way" offers multiple Application Program Interfaces (API) that are partly built on each other. Figureshows
the general structure of Z-Way™" with focus on the APIs. The most important part of Z-Way" is the Z-Wave core.
The Z-Wave core uses the standard Sigma Designs Serial APl to communicate with a Z-Wave compatible transceiver
hardware but enhanced with some Z-Way™ specific functions such as frequency change. The standard interface is
not public but available for owners of the Sigma Designs Development Kit (SDK)D
The Z-Wave core services can be accessed directly using the Z-Wave Device API (zDev API). There are two Z-Wave
device API versions available:
« Z-Wave APl as JSON API: All functions are available using aJSON APl implemented by an embedded webserver.
This web server can be used in two ways:
— web sockets, a permanent IP connection
— REST (Representational State Transfer)
Both ways to use the JSON API have the same data structures and commands. The Z-WAVE EXPERT USER
INTERFACE as described in chapter[7]uses the REST option of this JSON API. This user interface is a very good
reference how to apply the Z-Wave Device API. For oore information about the Z-Wave Device API please
refer to Section
« Z-Wave API as C Library API: All functions of the JSON API are available as C library function too. The URL

razberry.z-wave.me/fileadmin/z-way-test.tgz

provides a sample application written in standard C that makes use of the C level APl to demonstrate its ap-
plication. Makefiles and project files for compilation on Linux and OSX are provided together with the sample
code. More information on the C level API you find in Section[11.4]
The Z-Wave device APl only allows the management of the Z-Wave network and the control and management
of the devices as such. No higher order logic except the so-called Z-Wave associations between two Z-Wave devices
can be used.
For all automation and higher order logic a JavaScript automation engine is available. This engine is also
shipped with Z-Way™ .
The JavaScript APl on top of the JS engine mirrors all functions of the Z-Wave Device API but also allows access to
third-party device APls (e.g. EnOcean). This means the JS APl is the common ground for all further application logic
and user interfaces (with the exception of the Z-WAVE EXPERT USER INTERFACE that uses the Z-Wave Device API.
The JavaScript layer makes use of a JavaScript implementation provided by Google it is also used in Googles Chrome
web browser. All JavaScript APl functions can also be accessed using the embedded webserver. The beauty of this
interface is that JavaScript can be executed on the server and on the client. Executing on the client makes sense for
small changes to the data model or running small helper programs.
There are two important sub-portions of the JavaScript layer:

« Virtual Devices (vDevs): All functions of the physical devices plus other functions are mapped into virtual
devices. Virtual devices have properties and attributes linked to their physical counterpart functions. The Z-Way
SMART HoME INTERFACEis completely written using the virtual device concept and this user interface can act as
a good reference how to use them. Please refer to chapter[11.3|for more information about the use of the vdev
concept.

« The Apps: These are JavaScript portions that are dynamically loaded into the JS core and implement application
or user specific function. Please refer to chapter|6]for more information about the app concept and existing apps.
Please refer to Chapter[13.2for more information about how to develop own apps.

!The Sigma Designs SDK is available from Digikey (www.digikey.com). Depending on the hardware options chosen the price varies between 2000
and 4000 USD only.

119

razberry.z-wave.me/fileadmin/z-way-test.tgz

11 Develop Code for Z-Way"™

Demo Ul Demo Ul
»Z-way-ha” Lexpert”

JSON API ’ y ’
m
JS APl fo module Dev AP

modules

Z-Wave
API C lib

Z-Way
3rd Party Core

Z-Way
Z-Wave Core

Sigma Designs Serial AP/
[3rd Party TX/RX J [Z-Wave Transceiver]

Figure 11.1: Z-Way'" APIs and their use by GUI demos

11.2 Z-Way ' APIs Quick Reference

11.2.1 Z-Wave Device API

The Z-Wave Device APl implements the direct access to the Z-Wave network. All Z-Wave devices are referred to
by their unique identification in the wireless network—the Node ID. Z-Wave devices may have different instances of
the same function, also called channels (for example sockets in a power strip). The Z-Wave Device API refers to them
as daughter objects of the physical device object identified by an instance ID. In case there is only one instance, the
instance ID = 0 is used.

Sending Z-Wave Commands

All device variables and available commands in a Z-Wave device are grouped in the so-called command classes. The

Z-Wave API allows direct access to all parameters, values and commands of these command class structures. Annex

[D]gives you the complete reference of the implemented command classes.

Beside the devices the Z-Wave Device API also offers access to the management interface of the network. Annex |E]

gives you a full reference of the implemented function classes.

The Z-Wave Device API can be accessed on the JSON API with any standard web browser using the URL
http://YOURIP:8083/ZWaveAPI/«

Device objects or commands of these objects are accessed by
http://YOURIP:8083/ZWaveAPI/Run/devices[*].*
http://YOURIP:8083/ZWaveAPI/Run/devices[x] .1nstances[y].*
http://YOURIP:8083/ZWaveAPI/Run/devices[x] .1instances[y].commandClasses[z]
. K

The whole data tree of the Z-Wave network is accessed using
http://YOURIP:8083/ZWaveAPI/Data/*

Please refer to the Z-Way™ for information about the context, the commands, and the data used. Section provides
more information about the APl and the underlying data structure.

120

http://YOURIP:8083/ ZWaveAPI/*
http://YOURIP:8083/ ZWaveAPI/Run/devices[*].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].commandClasses[z].*
http://YOURIP:8083/ ZWaveAPI/Run/devices[x].instances[y].commandClasses[z].*
http://YOURIP:8083/ZWaveAPI/Data/*

11 Develop Code for Z-Way"™

All acces ot the webserver require authentication of the user. Please refer to Chapter for details how to authen-
ticate.

11.2.2 JavaScript API (JS API)

The Z-Wave Device API or any other third-party technology API do not offer any higher order logic support but the
pure access to functions and parameters of devices only.
Z-Way" offers an automation engine to overcome this restriction. A server-side JavaScript runtime environment
allows writing JavaScript modules that are executed within Z-Way™ (means on the server). The same time all functions
of the JS APl can also be accessed on the client side (the web browser). This offers some cool debug and test capabilities.
Among others it is possible to write whole JS functions right into the URL or the browser.
The JS API can be accessed from the web browser with the URL
http://YOURIP:8083/JS/Run/

Among others the whole Z-Wave Device API is available within the JS APl using the object “zway’. As a result, the
following three statements refer to the very same function:

1. http://YOURIP:8083/ZWaveAPI/Run/devices[3].” Client Side URL access using the Z-Wave Device API.

2. http://YOURIP:8083/JS/Run/zway.devices[3].": Client Side URL access using the JS API

3. zway.devices[3].": Server Side access using the JS and the public zway object
Due to the scripting nature of JavaScript it is possible to “inject’® code at run time using the interface. Here a nice
example how to use the JavaScript setInterval function:

Listing 11.1: Polling of device #2

/JS/Run/setlnterval (function () {
zway . devices [2]. Basic.Get ();
}, 300+«1000);

This code will, once “executed’® as URL within a web browser, call the Get() command of the command class Basic of
Node ID 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values of the device tree. They get
then executed when the value changes. Here is an example for this binding. The device No. 3 has a command class
SensorMultilevel that offers the variable “level” The following call—both available on the client side and on the server
side—will bind a simple alert function to the change of the variable.

Listing 11.2: Bind a function

zway . devices [3]. SensorMultilevel .data[1].val.bind(
function () {
debugPrint (’CHANGED TO:’ + this.value + ’\n’);

1)

a

Chapter[11.3]and[11.3.1] describe the whole JS API in detail. The names and IDs of the different command classes as
well as their instance variables can be found in the Annex[Dl

JavaScript modules can and will generate new functions that are accessible using the JSON interface. For simplification
function calls on the API (means on the client side) are written in URL style starting with the word “ZAutomation”:

/ZAutomation/JSfunction/JParameter == JSfunction(JParameter)

11.2.3 Virtual Device API

All functions and instances of a physical device, which are represented as daughter objects in the Z-Wave Device API,
are enrolled into individual virtual devices.

In case the Z-Wave API shows one single physical device with two channels, the Virtual Device APl will show two
devices with similar functionality. In case the Z-Wave API shows a physical device with several functions (like a binary
switch and an analog sensor in one device), the Virtual Device APl (vDev API) will show them as several devices with
one function each.

The vDev is accessed using the JSON API in a slightly different style than zDev API. All devices, variables, and com-
mands are encoded into a URL style for easier handling in AJAX code. A typical client-side command in the vDev API
looks like

%Please note that the Sensor Multilevel Command class data is an array index by the scale ID. Other command classes such as Basic do not have
this index but allow direct access using CommandClassName.data.level

121

http://YOURIP:8083/JS/Run/*

11 Develop Code for Z-Way"™

API Type Core Function Network Man- | Automation
agement

Z-Wave Dev API | Access to physical network and | Yes No

(JSON) physical devices via JSON

Z-Wave Dev API(Clib) | Access to physical network and | Yes No
physical devices via C style calls

JavaScript API Access to physical network and de- | No Yes, via zDev
vices plus JS type functions

vDev API Unified Access to functions of de- | No Yes
vices, optimized for AJAX GUI

Table 11.1: Different APIs of the Z-Way " system

http://YOURIP:8083/ZAutomation/api/vl/devices/ZWayVDev_6:0:37/command/off
“AP1” points to the vDev API function, “v1” is just a constant to allow future extensions. The devices are referred
to by a name that is automatically generated from the Z-Wave Device API. The vDev also unifies the commands
“command” and the parameters, here “off”’
On the server side, the very same command would be encoded in a JavaScript style.

Listing 11.3: Bind a function

dev = this.controller.devices.get(’ ZWayVDev_6:0:37 ’);
dev.command(’ off *);

The vDev API also offers support for notifications, locations information, the use of other modules, etc.

11.2.4 Comparison

Table[11.1summarizes the functions of the different APIs.

122

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off

11 Develop Code for Z-Way"™
11.3 The Z-Wave Device (JSON) API in detail

This chapter describes the Z-Wave Device API and its use in detail All examples will use the HTTP/JSON API notation.
Please note that the C library notation offers equal functionality.
The Z-Wave Device API is the north-bound interface of the Z-Wave Core. This Z-Wave core implement the whole
control logic of the Z-Wave network. The two main functions are

« Management of the network. This includes including and excluding devices, managing the routing and rerouting
of the network an executing some housekeeping functions to keep the network clean and stable. The function
classes can be seen as functions offered by the controller itself. Hence the variables and status parameters of
the networks are offered by an object called “controller.”

« Execution of commands offered by the wireless devices as such switching switches and dimming dimmers. Z-
Wave groups the command and their corresponding variables into so-called command classes. The Z-Wave API
offers access to these command classes with their variables and their commands according to the abilities of
the respective device.

The description of function classes and command Cclasses and their access using the JSON APl complete the descrip-
tion of the Z-Wave Device APL. For a full reference of function classes and command classes please refer to the Annex

[Eland Dl

11.3.1 The data model

Z-Way" holds all data of the Z-Way" network in a data holder structure. The data holder structure is a hierarchical
tree of data elements.

Following the object-oriented software paradigm the different commands targeting the network or individual devices
are also embedded into the data objects as object methods.

Each data element is handled in a data object that contains the data element and some contextual data.

The Data object

Each Data element such as devices[nodelD].data.nodeld is an object with the following child elements:

« value: the value itself

« name: the name of the data object

« updateTime: timestamp of the last update of this particular value

« invalidateTime: timestamp when the value was invalidated by issuing a Get command to a device and expecting

a Report command from the device

Every time a command is issued that will have impact on a certain data holder value the time of the request is stored
in "invalidateTime". This allows tracking when a new data value is requested from the network and when this new
data value is provided by the network.
This is particularly true if Z-Way™ is sending a SET command. In this case the data value is invalidated with the
"SET" commands and gets validated back when the result of the GET command was finally stored in the data model.
To maintain compatibility with JavaScript the data object has the following methods implemented:

« valueOf(): this allows to obmit .value in JS code, hence write as an example data.level = 255

« updated(): alias to updateTime

« invalidated(): alias to invalidateTime
These aliases are not enumerated if the dataholder is requested (data.level returns value: 255, name: "level”, updated-
Time: 12345678, invalidatedTime: 12345678).

The Data and Method Tree

The root of the data tree has two important child objects:
« controller, this is the data object that holds all data and methods (commands, mainly function classes) related
to the Z-Way™ controller as such
« devices array, this is the object array that holds the device -specific data and methods (commands, mainly
command classes).

11.3.2 Timing behavior of Z-Wave data

Please note that all status variables accessible on the Z-Wave Device APIs are only proxy of the real value
in the network.

123

11 Develop Code for Z-Way™

Figure 11.2: Z-Way " Object Tree Structure

124

11 Develop Code for Z-Way"™

ZM3102

Z-Wave Serial JSON
Wireless API API

Figure 11.3: Z-Way " Timings

To transport data between the real wireless device and the GUI multiple communication instances are involved. The
complexity of this communication chain will be explained in the following example:

Assuming the GUI shows the status of a remote switch and allows changing the switching state of this device. When
the user hits the switching button, he expects to see the result of his action as a changing status of the device in
the GUI. The first step is to hand over the command (SET) from the GUI to Z-Way" using the JSON interface. Z-
Way" receives the command and will confirm the reception to the GUI. Z-Way™ recognizes that the execution of
the switching command will likely result in a change of the status variable However Z-Way™ will not immediately
change the status variable but invalidate the actual value (mark as outdated). This is the correct action because at the
moment when the command was received the status on the remote device has not been changed yet but the status
of the switch is now unknown. If the GUI polls the value it will still see the old value but marked as invalid. Z-Way™
will now hand over the switching command to the Z-Wave transceiver chip. Since it is possible that there are other
command waiting for execution (sending) by the Z-Wave transceiver chip the job queue is queuing them and will
handle certain priorities if needed. Z-Way™ has recognized that the command will likely change the status of the
remote device and is therefore adding another command to call the actual status after the switching command was
issued. The transceiver is confirming the reception of the command and this confirmation is noted in the job queue.
This confirmation however only means that the transceiver (Z-Wave chip) has accepted the command and does neither
indicate that the remote device has receives it nor even confirming that the remote device has executed accordingly.
The transceiver will now try to send the command wirelessly to the remote device. A successful confirmation of the
reception from the remote device is the only valid indicator that the remote device has received the command (again,
not that it was executed!). The second command (GET) is now transmitted the very same way and confirmed by
the remote device. This device will now sent a REPORT command back to Z-Way" reporting the new status of the
switching device. Now the transceiver has to confirm the reception. The transceiver will then send the new value to
the Z-Way™ engine by issuing commands via the serial interface. Z-Way"" receives the report and will update the
switching state and validate the value. From now on the GUI will receive a new state when polling.

11.3.3 Executing Commands

JSON API allows executing commands on the server side using HTTP POST or GET requests. The command to execute
is taken from the URL.
All functions are executed in form

http://YOURIP:8083/Run/zZWaveAPI*

The best way to learn about the commands and the data is to use the Z-WAVE EXPERT USER INTERFACE plus a
JavaScript Debugger to see the command the AJAX code of the Z-WAVE EXPERT USER INTERFACE sends to the Z-
Way" server backend. Additionally the Z-Wave Expert User Interface provides nice and convenient vizualization of
all commends (both command classes and function classes).

All acces ot the webserver require authentication of the user. Please refer to Chapter[13.7]for details how to authen-
ticate.

125

http://YOURIP:8083/Run/ZWaveAPI*

11 Develop Code for Z-Way™

Software Information

Version number: v3.0.0-rc1-13-gb66410b

Gompile-ID: b66410babefb29ceba7da2c2f6f4e16c91814688

Gompile-Date: 2017-06-29 11:04:54 +0300
ul

Ul version 1.3.0

Built date 07-07-2017 10:16:31

O Send Controller NIF [C) show controller data (0) show controller's device data 1 Firmware Update
Functions:

SerialAPIGetInitData (0x02) + SerialAPIApplicationNodelnformation (0x03) + ApplicationCommandHandler (0x04) + GetControllerCapabilities (0x05) « Serial APISetTimeouts (0x086) *
GetSerialAPICapabilities (0x07) - SerialAPISoftReset (0x08) « Not implemented (0x09) « Not implemented (0x0z) - Serial APISetup (0x0b) « Not implemented (0x10) « Not implemented
(0x11) + SendNodelnformation (0x12) « SendData (0x13) - Not implemented (0x14) - GetVersion (0x15) + SendDataAbort (0x16) - RFPowerLevelSet (0x17) « Not implemented (0x1c) *
GetHomeld (0x20) - MemoryGetByte (0x21) - MemoryPutByte (0x22) - MemoryGetBuffer (0x23) - MemoryPutBuffer (0x24) - FlashAutoProgSet (0x27) « Not implemented (0x28) «
NVMGetld (0x29) - NVMExtReadLongBuffer (0x2a) - NVMExtWriteLongBuffer (0x2b) - NVMExtReadLongByte (0x2c) + NVMExtWriteLongByte (0x2d) + Not implemented (0x2e) « Not
implemented (0x37) » Not implemented (0x38) « ClearNetworkStats (0x39) « GetNetworkStats (0x3a) « GetBackgroundRSSI (0x3b) * RemoveNodeldFromNetwork (0x3f) +
GetNodeProtocolinformation (0x41) « SetDefault (0x42) « ReplicationReceiveComplete (0x44) « Not implemented (0x45) + AssignReturnRoute (0x46) DeleteReturnRoute (0x47) *
RequestNodeNeighbourUpdate (0x48) - ApplicationNodeUpdate (0x49) - AddNodeToNetwork (Ox4a) + RemoveNodeFromNetwork (Ox4b) + CreateNewPrimary (0x4c) +
ControllerChange (0x4d) « Not implemented (0x41) - SetLearnMode (0x50) + AssignSUCReturnRoute (0x51) * EnableSUC (0x52) » RequestNetworkUpdate (0x53) « SetSUCNodeld
(0x54) « DeleteSUCReturnRoute (0x55) » GetSUCNodeld (0x56) « SendSUCNodeld (0x57) « Not implemented (0x58) « ExploreReguestinclusion (0x5e) « Not implemented (0x51) «
RegquestNodelnformation (0x60) + RemoveFailedNode (0x61) « IsFailedNode (0x62) + ReplaceFailedNode (0x63) « Not implemented (0x66) = Not implemented (0x67) = Not implemented
(0x78) - GetRoutingTableLine (0x80) * Not implemented (0x90) * GetPriorityRoute (0x92) + SetPriorityRoute (0x93) « Not implemented (0x98) « Not implemented (0xb4) « Not
implemented (0xb6) « Not implemented (0xb7) « Not implemented (0xb8) » Not implemented (0xb9) + RFPowerlevelGet (Oxba) « Not implemented (Oxbd) + SendTestFrame (Oxbe) + Not
implemented (0xbf) - SetPromiscuousMode (0xd0) - PromiscuousCommandHandler (Oxd1) - WatchDogStart (0xd2) - WatchDogStop (0xd3) « Not implemented (0xd4) = Not
implemented (Oxee) « Not implemented (Oxef) - ZMEFreqChange (0xf2) + ZMERestore (0xf3) « ZMEBootloaderFlash (0xf4) - ZMECapabilities (0xf5)

Figure 11.4: Z-Way " Function Classes

Function Class Commands

Figure [11.4 shows the Controller Info Page in Network menu with a list of all function classes implemented. The

complete reference of the parameters and return values of the functions classes you find in annex|g]

Assuming there is a function class “Serial APIGetInitData” it is possible to call the function by calling the URL
/ZWaveAPI/Run/SerialAPIGetInitData (0)

in the web browser. In case the function was completed successfully, a simple “null” is returned; otherwise, an error
code is provided.

Device Command Class Commands

In the same manner, it is possible to send a command to a device using one of its command classes. The Z-WAvVE
ExPeERT USER INTERFACE provides a general menu item called Expert Commands as shown in Figure Z-Way"
reads out all command classes and its functions and provides here a complete list of command lass-specific commands.

The debug window will reveal the syntax if the complete command class reference in Annex[D]is not available or too
inconvenient to use.

For example, to switch ON a device no 2 using the command class BASIC, it is possible to write:
/ZWaveAPI/Run/devices[2] .instances[0] .commandClasses[0x20].Set (255)
or
/ZWaveAPI/Run/devices[2].instances[0].Basic.Set(255)

The Z-WAVE EXPERT USER INTERFACE has a JavaScript command

to simplify such operations. This function is accessible in the JavaScript console of your web browser (in Chrome you

find the JavaScript console under View->Debug->JS Console). Using this feature, the command in JS console would
look like

The usual way to access a command class is using the format
"devices[nodeld].instances[instanceld]. commandClasses[commandclassld]’. There are ways to simplify the syntax:
« “devices[nodeld].instances[instanceld].Basic” is equivalent to
“devices[nodeld].instances[instanceld].commandClasses[0x20]”
« theinstances[0] can be obmitted: “devices[nodeld].instances[instanceld].Basic” then turns into “devices[nodeld].Basic”

126

/ZWaveAPI/Run/SerialAPIGetInitData(0)

11 Develop Code for Z-Way™

& Intarview o Configuration =5 Association £5 Link health Expert commands X Firmware update
(#27) Boden|al = Instance GommandClass Gommand / Parameter
o Basic
(#1) Z-Way
(#3) CR Dacke ovel 255 11.07.2015
. Level
(#5) KU GOz [0 OoF
(#6) KU Temp Dimmer level | fmin: 0, max: 255)
(#7) CP Jal Control (99) Mz
(255 On

(#8) CP Jal
(#11) Keller Temp
(#12) KU Decke
(#13) GP Fanstar o SwitchMultilavel

witchMultileve
(#14) SL Decke

(#13) 5L Schrank Dimmer level

(#16) 8L Jal o (0 Off

(#17) Verandatlr G5 % 0 {min: 0, mase: 99y

(#10) Carpart t‘g:]s;:gn

(#21) Werkstattlicht Duiration

(#22) Waschmasching o (0] immediatel

(#23) WO Stehlampe in seconds | 1 fmin: 1, max: 127}
(#26) Rauchmelder UG in minutes 1 [min: 1, max: 127}

(#28) Jal Links

FE200 |al Warands

Figure 11.5: Z-Way'" Expert Command Class Commands

Accessing Data

The data model or data holder object as described is Section [T1.3.1] can be accessed completely using the Z-WAve
ExPERT USER INTERFACE . The two buttons (Show controller Data] and [Show controllers device data] in [Network>> Controller Info] of
Z-WAVE ExPERT USER INTERFACE as shown in Figure[T1.4]lists all variables of the controller as such. One structure
is controller-specific and one other structure is the data of the controller as node of the Z-Wave network. All nodes
of the Z-Wave network have the very same data structure beside their individual array of instances and command
classes per instance. This data model for the individual devices can be access using (Configuration > Show Interview results] in
Z-WAVE ExPERT USER INTERFACE . Figure [T1.6shows this dialog. On the top of the window there is a button with
the devices name. This button reveals the data structure of the individual device as shown in Figure[11.7]
The dialog has the list of all command classes and clicking on the name of the command class will open a sub dialog
showing the data of the commend class. Each command class has some permanent values:
« supported: This indicates if this command classes is supported or controlled only
« version: This is the version number of the command class as detected during the device interview using the
command class “VERSION”
« security: Indicates if this command class is within the security environment
- interviewDone: This flag indicates if the interview of this particular command classes passed
« interviewCounter: This is a helper variable that is counted down on every attempt to interview the devices. Its
default value is 10. If it reaches 0 (10 unsuccessful attempts), Z-Way" will give up interviewing. This makes
sure that Z-Way™ is not blocked by devices with wrong implementation not passing interview.
Any data holder object has properties value, updateTime, invalidateTime, name, but for compatibility with JS and pre-
vious versions we have valueOf() method (allows omitting .value in JS code, hence write "data.level == 255"), updated
(alias to updateTime), invalidated (alias to invalidateTime).

/ZWaveAPl/Data/<timestamp>

Returns an associative array of changes in Z-Way'" data tree since <timestamp>. The array consists of (<path>:
<JSON object>) object pairs. The client is supposed to assign the new <JSON object> to the subtree with the
<path> discarding previous content of that subtree. Zero (0) can be used instead of <timestamp>> to obtain the full
Z-Way " data tree.

The tree have same structure as the backend tree (Figure[11.2) with one additional root element "updateTime" which
contains the time of latest update. This "updateTime" value should be used in the next request for changes. All

127

11 Develop Code for Z-Way™

Interview Results

Interview Results MainsDevice _18

D
1]
®
(=
-

Instance CommandClass
0 Basic

0 SwitchBinary

0 SwitchAll

0 SensorMultilevel
0 Meter

0

AssociationGrouplnformation O Force Interview

o

DeviceResetLocally

o

CentralScene O Force Interview

ZWavePlusInfo
Supervision
Configuration
ManufacturerSpecific
PowerLevel
Protection

FirmwareUpdate

O o o o o o o o

Association

Qﬂ‘s'\ﬂ('\ﬂ(lﬂlﬂ('\ﬂ(

o

\/ercinn

¥ Cancel

Figure 11.6: Command Class Inerview overview

128

11 Develop Code for Z-Way"™

CommandClass

/: None (07.07.2017)
basicType: 4 (07.07.2017)
genericType: 16 (07.07.2017)
specificType: 1 (07.07.2017)
infoProtocolSpecific: 13868033 (07.07.2017)
deviceTypeString: Binary Power Switch (07.07.2017)
isVirtual: false (07.07.2017)
isListening: true (07.07.2017)
isRouting: true (07.07.2017)
isAwake: true (07.07.2017)
optional: true (07.07.2017)
isFailed: true (07.07.2017)
sensor250: false (07.07.2017)
sensor1000: false (07.07.2017)
neighbours: 1 (07.07.2017)
manufacturerld: 340 (07.07.2017)
vendorString: Popp (07.07.2017)
manufacturerProductType: 3 (07.07.2017)
manufacturerProductld: 10 (07.07.2017)
ZWLib: 3 (07.07.2017)
ZWProtocolMajor: 4 (07.07.2017)
ZWProtocolMinor: 61 (07.07.2017)
SDK: 6.71.01 (07.07.2017)
applicationMajor: 3 (07.07.2017)
applicationMinor: 1 (07.07.2017)
nodelnfoFrame: 94,85,159 (07.07.2017)
ZDDXMLFile: (07.07.2017)
lastSend: 0 (07.07.2017)
lastNonceGet: 1301362 (07.07.2017)
lastReceived: 0 (07.07.2017)
failureCount: 7 (09.07.2017)

X Cancel

Figure 11.7: Command Class Variables in Z-WAVE EXPERT USER INTERFACE

129

11 Develop Code for Z-Way"™

timestamps (including updateTime) corresponds to server local time.
The object looks like:

Listing 11.4: JSON Data Structure
{

"[path from the root]": [updated subtree],
"[path from the root]": [updated subtree],

updateTime: [current timestamp]
}
Examples for Commands to update the data tree look like:
Get all data: /ZWaveAPl/Data/0
Get updates since 134500000 (Unix timestamp): /ZWaveAPl/Data/134500000

Please note that during data updates some values are updated by big subtrees. For example, in Meter Command Class
value of a scale is always updated as a scale subtree by [scale].val object (containing scale and type descriptions).

/ZWaveAPl/InspectQueue

This function is used to visualize the Z-Way" job queue. This is for debugging only but very useful to understand the
current state of Z-Way ' engine.

The information given on this page is only relevant for advanced Z-Wave developers and for debugging.

The table shows the active jobs with their respective status and additional information.

Table[11.2] summarizes the different values displayed on the Job Queue visualization. While this info is certainly not
relevant for end users of the system it is a great debug tool.

Handling of updates coming from Z-Way"™

A good design of a user interface is linking Ul objects (label, textbox, slider, ...) to a certain path in the tree object.
Any update of a subtree linked to user interface will then update the user interface too. This is called bindings.

For web applications Z-Way™ contains a library called jQuery.triggerPath (extention of jQuery written by Z-Wave.Me),
that allows making such links between objects in the tree and HTML DOM objects. Use

var tree;
jQuery.triggerPath.init(tree);
during web application initialization to attach the library to a tree object. Then run
jQuery([objects selector]).bindPath([path with regexp], [updater function], [additional arguments]);

to make binding between path changes and updater function. The updater function would be called upon changes in
the desired object with this pointing to the DOM object itself, first argument pointing to the updated object in the
tree, second argument is the exact path of this object (fulfilling the regexp) and all other arguments copies additional
arguments. RegExp allows only few control characters: * is a wildcard, (1|2|3) - is 1 or 2 or 3.

Please note that the use of the triggerpath extension is one option to handle the incoming data. You can
also extract all the interesting values right when the data is received and bind update functions to them.

11.4 C-Library APl and a general view on the Z-Way" file structure

11.4.1 Files in the /zway folder

Z-Way " keeps all files in one folder with exception of the log files. In Unix based platforms such as Linux PC,

Raspberry Pi or open WRT the standard install folder is usually . The logfile is typically placed in
but this location of the log file can be reconfigured in the config file.

On Windows, the installation wizard asked where to place Z-Way" and where to place the log file.
Right after installation, the standard folder has the following content:

130

11 Develop Code for Z-Way"™

This column shows the number of sending attempts for a specific job.
Z-Way" tries three times to dispatch a job to the transceiver.

W,S,D:

This shows the status of the job. If no indicator is shown the job is in
active state. This means that the controller just tries to execute the job.
“W” states indicated that the controller believes that the target device of
this job is in deep sleep state. Jobs in “W” state will remain in the queue
to the moment when the target device announces its wakeup state by
sending a wakeup notification to the controller. Jobs in “S” state remain
in the waiting queue to the moment the security token for this secured
information exchanged was validated. “D” marks a job as done. The job
will remain in the queue for information purposes until a job garbage
collection removed it from the queue.

ACK:

shows if the Z-Wave transceiver has issued an ACK message to con-
firm that the message was successfully received by the transceiver. This
ACK however does not confirm that the message was delivered success-
fully. A successful delivery of a message will result in a “D” state of this
particular job. If the ACK field is blank, then no ACK is expected. A “”
indicates that the controller expects an ACK but the ACK was not re-
ceived yet. A “+” indicates that an ACK was expected and was received.

RESP

shows if a certain command was confirmed with a valid response. Com-
mands are either answered by a response or a callback. If the RESP field
is blank, then no response is expected. A “” indicates that the controller

expects a response, but the response has not been received yet. A “+
indicates that a response was expected and has been received.

Cbk

If the Cbk field is blank, then no callback is expected. A “” indicates that
the controller expects a Callback but the Callback was not received yet.
A “+” indicates that a Callback was expected and was received.

Timeout

Shows the time left until the job is de queued

Node Id

shows the ID of the target node. Communication concerning the net-
work, like inclusion of new nodes, will have the controller nodelD as a
target node ID. For command classes command the node ID of the des-
tination Node is shown. For commands directed to control the network
layer of the protocol, the nodelD is zero.

Description

shows a verbal description of the job

Progress

shows a success or error message depending on the delivery status of
the message. Since Z-Way'" tries three times to deliver a job up to 3
failure messages may appear. Buffer: It shows the hex values of the
command sent within this job

Table 11.2: Parameters of the Job Queue Vizualization

131

11 Develop Code for Z-Way™

z-way-server

+— automation: The JavaScript sub system

b— config: Various configuration xml files
+— htdocs: The web servers doc directory
+— libs: The binary libs such as libzway etc.

+— libzway Header files for libzway and other 1libs
+— modules: Dbinary modules

+— modules—-includes: header file for binary modules
+— translations: XMLs mapping Ids to text

+— ZDDX: Device Description Files

y— z—get-tty-config: Config for utility

+— ChangeLog

+— config.xml: Main config file

+— z—cfg-update: Utility

+— z—get-tty: Utility

«— z-way-server: Main Application

config.xml - the main config file

The main config file in the root folder has XML file format. If only allows setting the log level (0 = log all, 9 = log almost
nothing), the path to the log file and a debug port if needed. Don’t change the setting for automation folder unless
you really know what you do and why.

This is an example for the standard config.xml displaying all log right into the console.

Listing 11.5: config.xml

<config >
<automation—dir >automation </automation—dir >
<log—file ></log—file >
<log—level >0</log—level >
<debug—port >0</debug—port >
</config >

config: Various configuration xml files

This subfolder has the following structure:

config

+— maps: legacy folder

— zddx

L—HOMEID—DeviceData.xml: main storage for Z-Wave structure
+— Defaults.xml: Default Settings

+— Profiles.xml

*— Rules.xml The file allows defining

various behavior of Z-Way™ , among them the appearance of Z-Way" as secondary controller:

« AutoConfig: Flag if Z-Way™ shall interview the device right after inclusion (default = 1)

« Deeplnterview: Flag that Interview is only completed after all values are received back. This includes asking
the device for all initial values of sensor or status data (default = 1)

« SaveDataAfterInterviewSteps: Flag whether or not all device data will be saved after each interview step (default
=1)

« TryToBecomeSIS: Will Z-Way™ try to become networks SIS if transceiver hardware allows it to (default = 1)?

« SecurelnterviewAsInclusionController: Z-Way™ will initiate interview as Inclusion Controller, if 0 - only as
Primary/SIS

132

11 Develop Code for Z-Way"™

« SecurelnterviewAcceptedWithoutSchemelnherit: If 1- Z-Way" will not fail secure interview as secondary/in-
clusion controller if Scheme Inherit is not received, if 0 - fail interview as by Z-Wave protocol

« SecureAllCCs: Always use Security if possible (even for CCs allowed as non-secure)

« DeviceReplyTimeout: Delay to wait (in seconds) for a device to reply with a REPORT on a GET command

« DeviceRelaxDelay: Delay between two subsequent packets sent to one device, measured in ticks (10 ms). Some
slow devices might need about 10 to respond correctly to burst of packets

« Serial APITimeout: Extra time to be added to Serial APl timouts. Set up to 1.0-3.0 sec in case of slow channel
toward Z-Wave chip (e.g. in cloud applications)

« Command Class-Specific Settings

Wakeup -> Wakeuplnterval: Default Wakeup Interval

Scene Actuator Conf -> Max Scenes: Maximum number of Scenes supported

Scene Controller Conf -> Max Scenes: Maximum number of Scenes supported

Protection -> Mode: Default Protection Mode

SensorMultilevel -> Fahrenheit: Flag what temperature scale is used

SwitchAll -> Mode: Default Switch All mode

MultiCmd -> MaxNum: The maximum number of commands within multi-command encapsulation. The
optimal value would be even, but there are many broken devices in the market that do not support this.
A lower number means less efficient but more robust against faulty devices.

Firmware Update -> Fragment Size: Fragment size on 3rd gen RaZberry and 3rd gen UZB cannot be more
than 32 (max packet size was 37, with possible CRC it gives 32). On UZB and new 5gen it can be up to 40
bytes

ThermostatSetPoint: -> Fahrenheit: Flag what temperature scale is used

« Controller: Description of how Z-Way™ will behave as a device in the network. This entry has the following
subentries:

The file

NodelnformationFrame: The command class Z-Way"™ is described as “supported” in the network
SecureNodelnformationFrame: Command Classes available in secure environment
InstanceNodelnformationFrame: Command Classes in Instances if Multi Channel is emulated
VersionlD =iD: Versions to be reported in Command Class Version Get Command for all Command Classes
announced in NIF
Name: Default Node Name reported by NodeNaming Report
Location Default Node Location of Controller reported by NodeNaming Report
AppVersion: Application Version reported by ManufacturerSpecific Report
Manufacturer Specific: Values report by ManufacturerSpecific Report
SpecificDeviceClass: Specific Device Class reported
GenericDeviceClass: Generic Device Class reported
Icons: Z-Wave Plus Icons
Lifeline: Defines how many devices will be in Lifeline Association Group
CommandClassSupportedVersion: Defines the version numbers of the supported command classes
Channels: Defines the simulated channels

contains the EnOcean profile definition. This clearly reflects the official profile definitions

published by the EnOcean alliance.

The file

is a legacy file.

133

11 Develop Code for Z-Way™

translations: XMLs mapping Ids to text

translations

— AEC.xml: Advanced Energy Framework

— Alarms.xml: Alarm conditions

+— BarrierSignals.xml

— ColorCapabilities.xml

+— DeviceClasses.xml: Z-Wave Classic Device Classes
— LocEvents.xml: Door Lock Events

+— Scales.xml: Sensor Multilevel and Meter Scales
+— SDKIds.xml: Major Minor into SDK versions

+— ThermostatModes.xml

+— VendorIds.xml: Vendor Id into Vendor Name

#— ZWavePlus.xml: Z-Wave Plus Role Types and Network Types

All files in this subfolder are XML files and some of them require local language translations, as described in Chapter

[10.3

ZDDX: Device Description Files

ZDDX files (Z-Wave Device Description XML Files) are XML files containing verbal description of a specific Z-Wave
device that cannot be called from the device itself during the interview process: They are:

The naming of Association Groups. Modern Z-Wave device provides them in English language using the Asso-
ciation Group Information Command Class. The ZDDX file provides this information for older devices and in
various languages.

Configuration Parameters and Values: It is always possible to set a configuration value knowing the integer
values from the device manual. Z-Way" offers a convenient way to set Z-Wave configuration values utilizing
the information from ZDDX files.

An Image of the device.

Information on inclusion, exclusion and wakeup processes.

It is possible to add your own ZDDX files, but Z-Way™ uses an index file ZDDX.indx to access them. Once a new file
is added, run

Chapter[13.3explain how to add and to submit new own ZDDX files and how to extend them.

Htdocs: The web servers document folder

htdocs : web server doc folder

+— config: link from /config into web space
+— ZDDX: link from /ZDDX into web space

+— expert: Z-Wave Expert User Interface

+— smarthome: Smart Home User Interface

— translation

*— index.html

This subfolder is the root folder of the embedded webserver. The index.html redirects to smarthome/index.html.

134

11 Develop Code for Z-Way™

automation: The JavaScript sub system

automation

+— classes: Some base classes of the JS system

+— core: The core classes of the JS system

+— defaultConfigs: A collection of default config.json files

+— lang: Translations of JS system messages
+— 1lib: Some utility scripts of the JS system
+— modules: The preinstalled apps

+— userModules: Downloaded apps

L—uploadModule.sh: Utility to upload own created apps

s— storage: The central folder to store all user data and settings

+— configjson—-XXXXXXX: Configuration Settings of Smart Home UI

+— dedevicesjson—-XXXXXXX: complete device description in German)
+— endevicesjson-XXXXXXX: complete device description in English
— expertconfigjson—-XXXXXXX: Configuration Settings of Expert UI

+— history-XXXXXXX: Data for 24 hour history display

+— ...: more json files containing data

The subfolder for automation contains the whole JavaScript (JS) subsystem including the
« source code of the software core (classes, core, lib),
« the storage for the apps (modules, user modules),
« the central storage for configs, images, uploads, history, logging, etc.,
« some default files for factory default reset and recovery from failures.
The most sensitive file is configjson-XXX since it contains the information about the user accounts including login
name, password, and recovery email.
For more information about the creation of new modules that will be placed into the user modules, please refer to

Chapter[13.2

11.4.2 The use of the C-Library

The Z-Way" library is a middleware between Sigma Designs Z-Wave transceiver and your application. Z-Way"™
offers pretty high level API to control Z-Wave devices and manage wireless network.
Interaction with the library covers three aspects:

« sending commands to Z-Wave devices;

« sending network management commands to the transceiver;

« receiving updates from the network.

« Sending commands
Every command request generates an outgoing packet (job). Before generating a packet, library will validate pa-
rameters and check whether the command is supported by recipient. In case of failure command will return error
immediately.
Once a job is generated, it is placed into outgoing queue for future send. The queued jobs are handled internally by
Z-Way " engine according to commands priorities, nodes states and capabilities, transceiver state etc.
Once the job is sent, it must be first confirmed it was successfully delivered to Z-Wave stack, and then confirmed it
was delivered to recipient. All these operations are performed asynchronously, so command may provide a callback
function to call in case of success or failure if it is needed to know delivery result.
After the delivery was confirmed, command is considered executed. If it was a state request command (i.e. SensorMultilevel
Get), response packet may be delayed (or even not sent at all), so command’s success/failure callbacks cannot be used
to get requested state immediately.

Receiving updates

All incoming packets from Z-Wave network are automatically parsed by Z-Way™ and stored in special variables
called data holders. Data holder is a named variable that stores a value along with its data type and time the value

135

11 Develop Code for Z-Way"™

was last updated and "invalidated". Each data holder may also contain a set of child data holders, so they form a
hierarchical data storage. Data holders also support callbacks, so custom code may be executed each time the value
is updated.

For example, 1evel data holder stores dimming level of a dimmer. Once application executes a Get command for
that dimmer, Z-Way" will update invalidateTime property on the level data holder, so application knows the
current value is assumed to be outdated, but the new one was not received yet.

Once Z-Way" received a packet with new value of the dimmer, it will store it in level data holder and update
updateTime property. Since updateTime is greater that invalidateTime, the value is considered valid now.
Z-Wave device can also send unsolicited state reports to controller (without a request from controller’s side; e.g. due
to local operation or periodically). Due to asynchronous nature of Z-Wave protocol, controller can’t tell whether the
packet was sent unsolicited or it is a response to the previous command. So unsolicited packet will be handled the
same way exactly.

Command Classes

Z-Way" inherits structure of Z-Wave protocol and divides data holders and command on different Command Classes
(CC). Command Classes are building blocks of Z-Wave functionality. For example, dimming is provided by Command
Class SwitchMultilevel, relay operation by Command Class SwitchBinary, sensors by command class SensorMultilevel
and SensorBinary etc. Please consult Z-Wave protocol basics to understand Z-Wave Command Classes.

All Command Classes share a minimal subset of common data holders:

« supported says if CC is supported by device (it implements that functionality) or only controlled (it can control
other devices implementing that functionality).

« version stores version of the CC. Used internally to know how to deal with that Command Class.

« security tells if CC communications should be encrypted using Z-Wave AES security mechanism.

« interviewDone and interviewCounter describe the status of initial interview process during which Z-Way"™
asks the device about its CC capabilities. If the interview is incomplete, Z-Way ™ might fail to use some Com-
mand Classes with this device. All Z-Wave certified devices MUST pass interview process. All the other data
holders are specific to each Command Class. For example, SwitchMultilevel Command Class contains level
data holder, SensorBinary has two-level storage, grouping data by sensor types: 0 -> sensorTypeString, level,
5 -> sensorTypeString, level, ... where type identifiers are Z-Wave specific constants. Every Z-Wave specific
constant value will have corresponding verbal description (in case of SensorBinary it is in sensorTypeString
data holder).

Some Command Classes are hidden under the hood of Z—Waym : MultiCmd, Security, CRC16, MultiChannel, Appli-

cationStatus. They’re handled internally by Z-Way" software, and shouldn’t be used directly.

Some Command Classes have no public APls, but their data holders may be very useful in your application: AssociationGrouplnforma
DeviceResetLocally, ManufacturerSpecific, Version, ZWavePlusInfo.

All the remaing Command Classes have their Get and Set commands specific to functionality of the Command Class.

Consult CommandClassesPublic.h header file for more info about available commands for different Command Classes

and their meaning.

Network management

Z-WayTM offers API for network management operations: include new devices, exclude devices, discover neighbor
devices, remove failed nodes, frequency selection, controller reset etc. These functions are described in ZWayLib.h
header file.

Z-Way™ also provides a low level access to Z-Wave transceiver functionality through Sigma Designs Serial API.
These functions are provided by Function Classes. You should use them only if you have deep knowledge of Z-Wave
networking. Check FunctionClassesPublic.h for more info.

Using Z-Way" Library in C-Code
To use Z-Way"" one need to include few header files:

#include <ZWaylLib.h>
#include <ZLogging.h>

Z-Way" will need to know where to write the log to, so first of all you need to create logging context using z1og_create ()
call. You can disable logging by passing NULL instead of logging context to Z-Way " .

Then create new Z-Way'" context using zway_init(). It will only allocate memory, read log files, initialize internal
structures. At this point you can already attach your handlers on new device/instance/Command Class creation (you

will also be able to do it at any time later). Do it using zway_device_add_callback() call.

136

11 Develop Code for Z-Way"™

ke oshoxes@osboxes: ~/Desktop/z-way-server - + x

Datei Bearbeiten Reiter Hilfe

Figure 11.8: Terminal running z-way-test

Warning: you should initialize ZWay pointer with NULL before passing it to zway_init!
Executing zzway_start() will open serial port and start a new thread that will handle all communications with the
transceiver. From now Z-Way"" can receive packets from the network, but can not parse them yet, since devices were
not discovered yet. All received packets will just be queued to be parsed later after discovery process.
Last step to run Z-Way"" is zway_discover() call. It will start communications with the Z-Wave transceiver and
ask about devices in the network, their capabilities, network state etc. During discovery phase Z-Way™ will create
structures for all devices and load saved data from file stored in /zddx folder.
From now on, Z-Way " is ready to operate. Incoming events will trigger callback functions attached by application,
and executing commands will put new packets in the queue.
You will also need few other functions zway_is_running(), zway_is_idle(), zway_stop(), zway_terminate() to handler
termination process.
The link
http://razberry.z-wave.me/fileadmin/z-way—-test.tgz
downloads a very simple test project using the Z-Way™ core library “libzway.so.” The project contains a simple mains.c
plus a Makefile. A Z-Way™ installation is required too. To compile the test project, some requirements need to be
met:
« GNU-based tool chain with a compiler, linker, etc.
« Copy main.c and Makefile into the root folder of Z-Way"™
« Check the path to library and header files and adapt the Makefile is needed
« Make sure the following libraries are installed:
— libxml2 (apt-get install libxml2-dev)
— libarchive (apt-get install libarchive-dev)
— libcrypto (apt-get install libssl-dev)
Executing the Makefile will generate a binary executable in the same folder. If Z-Way" was just down-

loaded the code will assume a virtual serial Z-Wave device on . if your virtual device is a different

node, just make a symlink like

Now start the code from the folder with . The header file “Z-Waylib.h”

in “/libzway” gives a brief explanation of the calls into the library. The demo file main.c demonstrates the use of the
calls. Figure shows the small help page of the test software.

137

http://razberry.z-wave.me/fileadmin/z-way-test.tgz

12 The JavaScript Engine

The Z-Way"™ core function engine is the so called JavaScript (JS) automation system. It uses the APIs of the technology-
dependent ’drivers’ and delivers all the functions and interface for running a Smart Home controller:

« It unifies the functions and properties of the physical devices to a common device structure, the virtual
Device (vDev).

« It allows to create own virtual devices not related to physical devices.

« It allows to dynamically load ’plugin’ modules - also written in Javascript or even in native C - that extend the
function of the JS core and deliver furter functionality. Users see these modules as apps. For more information
about apps please refer to chapter 6]

« It organizes the communication between the virtual devices as event bus. Every vDev can inject events into
this bus and every vDev can read events from this bus.

« It provides a higher layer API that is is used among others by the Smart Home User Interface.

This chapter explains the different building blocks of the JS Engine:

« Javascript Interpreter/Compiler Core Engine

« Virtual Devices

« Event Bus

« User Interface elements referring to the different virtual devices

« The structure of the Apps

12.1 The JavaScript Core Interpreter and the integration of the Z-Wave
function

Z-Way" uses the JavaScript engine provided by Google referred to as V8. You find more information about this
JavaScript implementation on
https://code.google.com/p/v8/.
V8 implements JavaScript according to the specification ECMA SD
Please note that this V8 core engine only implements the very basic JS functions and need to be extended to be usable
in a Smart Home environment.
Javascript code can be executed on the server side and certain functions of the JS core are available on the client side
as well since most modern web browsers have a built-in Javascript engine as well. The bridge between the server side
JS and the web browser client is a built-in web server. This is the same embedded web server serving all the web
browsers HTML pages etc.
Accessing a server side JS function from the web browsers client side is easy. Just call
http://YOURIP:8083/JS/Run/
with the function desired.
Please note that all accesses using the embedded webserver require an authentication of the web browsers instance.
Please refer to chapter[13.1for details how to authenticate against the web server.
Z-Way " offers one central object with the name 'zway’ . This object encapsulates all the Z-Wave variables and
functions known from the Z-Wave Device API describes in chapter[11.3]
Hence its possible to use the very same functions of the Z-Wave Device APl using the JS engine. The zway objects
internal structure is shown in figure[11.2]and the data elements are describes in Annex[11.3.1]
The functions can be accessed using the web browsers function like
http://YOURIP:8083/JS/Run/zway.devices [x].x*
Due to the scripting nature of JavaScript its possible to ’inject’ code at run time using the interface. Here a nice
example how to use the Java Script setInterval function:

Listing 12.1: Polling device #2

/JS/Run/setInterval(function() {
zway.devices[2].Basic.Get();
}, 3001000);

!http://www.ecma-international.org/publications/standards/Ecma-262.htm

138

https://code.google.com/p/v8/.
http://YOURIP:8083/JS/Run/*
http://YOURIP:8083/JS/Run/zway.devices[x].*

12 The JavaScript Engine

This code will, once ’executed’ as URL within a web browser, call the Get() command of the command class Basic of
Node ID 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values of the device tree. they get
then executed when the value changes. Here an example for this binding. The device No. 3 has a command class
SensorMultilevel that offers the variable level. The following call - both available on the client side and on the server
side - will bind a simple alert function to the change of the variable.

Listing 12.2: Bind a function

zway.devices[3].SensorMultilevel.data[1].val.bind(function() {
debugPrintC(CHANGED TO:’ + this.value + \n’);

D;

12.2 Z-Way ' extensions to the JavaScript Core

Z-Way" provides some extensions to the JS core that are not part of the ECMA functionality mentioned above.

12.2.1 HTTP Access

The JavaScript implementation of Z-Way " allows to directly accessing HTTP objects.

The http request is much like jQuery.ajax(): r = http.request(options);

Here’s the list of options:
« url - required. Url you want to request (might be http, https, or maybe even ftp);
« method — optional. HTTP method to use (currently one of GET, POST, HEAD). If not specified, GET is used,;
« headers — optional. Object containing additional headers to pass to server:

headers: {
"Content—Type": "text/xml",
"X—Requested—W:ith": "RaZberry/1.5.0"

}

« data — used only for POST requests. Data to post to the server. May be either a string (to post raw data) or an
object with keys and values (will be serialized as ’key1=value1&key2=value2&...’);
« auth — optional. Provides credentials for basic authentication. It is an object containing login and password:

auth: {
in: 'username’,
login
password: ’secret’

}

« contentType — optional. Allows to override content type returned by server for parsing data (see below);

« async - optional. Specifies whether request should be sent asynchronously. Default is false. In case of syn-
chronous request result is returned immediately (as function return value), otherwise function exits immedi-
ately, and response is delivered later thru callbacks.

« success, error and complete — optional, valid only for async requests. Success callback is called after success-
ful request, error is called on failure, complete is called nevertheless (even if success/error callback produces
exception, so it is like *finally’ statement);

Response (as stated above) is delivered either as function return value, or as callback parameter. Is is always an object
containing following members:

« status — HTTP status code (or -1 if some non-HTTP error occurred). Status codes from 200 to 299 are considered
success;

« statusText — status string;

« URL - response URL (might differ from url requested in case of server redirects);

« headers — object containing all the headers returned by server;

« contentType — content type returned by server;

« data - response data.

Response data is handled differently depending on content type (if contentType on request is set, it takes priority over
server content type):

« application/json and text/x-json are returned as JSON object;

« application/xml and text/xml are returned as XML object;

« application/octet-stream is returned as binary ArrayBuffer;

« string is returned otherwise.

139

12 The JavaScript Engine

In case data cannot be parsed as valid JSON/XML, it is still returned as string, and additional parseError member is
present.

http.request({
url: "http://server.com” (string, required),
method: "GET" (GET/POST/HEAD, optional, default "GET"),

headers: (object, optional)

{
"name": "value",
j2
auth: (object, optional)
{
"login": "xxx" (string, required),
"password": "««" (string, required)
j2
data: (object, optional, for POST only)
{
"name": "value",
}

__OR ——
data: "name=value&.." (string, optional, for POST only),

async: true (boolean, optional, default false),
timeout: (number, optional, default 20000)
success: function(rsp) {} (function, optional, for async only),

error: function(rsp) {} (function, optional, for async only),
complete: function(rsp) {} (function, optional, for async only)

B
response:
{
status: 200 (integer, —1 for non—http errors),
statusText: "OK" (string),
url: "http://server.com” (string),
contentType: "text/html" (string),
headers: (object)
{
"name": "value"
b
data: result (object or string, depending on content type)
}

12.2.2 XML parser

ZXmlDocument object allows to convert any valid XML document into a JSON object and vice versa.

var x = new ZXmlDocument()

Create new empty XML document

x = new ZXmlIDocument("xml content")

Create new XML document from a string

140

12 The JavaScript Engine

X.root

Get/set document root element. Elements are got/set in form of JS objects:

{

name: "node_name", — mandatory
text: "value", — optional, for text nodes
attributes: { — optional

name: "value",

2

children: [— optional, should contain a valid object of same type
{..}

]

}

For example:

(new ZXmlIDocument(’<weather><city id="1"><name>Zwickau</name>
<temp>2.6</temp></city>
<city id="2"><name>Moscow</name><temp>—23.4</temp></city>
</weather>’)).root =

{
"children":[
{
"children":[
{
"text":"Zwickau",
"name":"name"
3
{
"text":"2.6",
"name":"temp"
}
1
"attributes":{
ﬂidﬂ:"<l"
2
"name":"city"
I3
{
"children":[
{
"text":"Moscow",
"name":"name"
2
{
"text":"—23.4",
"name":"temp"
i
1,
"attributes":{
vlidﬂ:nzll
|3
"name":"city"
i
1,
"name":"weather"
}
x.isXML

This hidden readonly property allows to detect if object is XML object or not (it is always true).

x.toString()

Converts XML object into a string with valid XML content.

141

12 The JavaScript Engine
x.findOne(XPathString)

Returns first matching to XPathString element or null if not found.

x.findOne(’/weather/city[@id="2"]") // returns only city tag for Moscow
x.findOne(’/weather/city[name="Moscow"]/temp/text()’) // returns temperature

x.findAll(XPathString)

Returns array of all matching to XPathString elements or empty array if not found.

x.findAll(/weather/city’) // returns all city tags
x.findAll(C/weather/city/name/text()’) // returns all city names

XML elements

Each XML element (tag) in addition to properties described above (text, attributes, children) have hidden readonly
property parent pointing to parent object and the following methiods:

« insertChild(element) Insert new child eleemnt

« removeChild(element) Remove child element

« findOne(XPathString) Same as on root object, but relative (no leading / needed in XPathString

« findAll(XPathString) Same as on root object, but relative (no leading / needed in XPathString
ZXmlDocument is returned from http.request() when content type is "application/xml’, "text/xml’ or any other ending
with "+xml’. Namespaces are not yet supported.

12.2.3 Cryptographic functions

crypto object provides access to some popular cryptographic functions such as SHA1, SHA256, SHA512, MD5, HMAC,
and provides good random numbers.

var guid = crypto.guid()

Provides standard GUID in string format.

var rnd = crypto.random(n)

Generates n random bytes. Returned values is of type ArrayBuffer. To convert it into array use this trick:

rnd = (new Uint8Array(crypto.random(10)));

var dgst = crypto.digest(hash, data, ...)

Returns digest calculated using selected hash algorithm. It supports virtually all the algorithms available in OpenSSL
(md4, md5, mdc2, sha, shal, sha224, sha256, sha384, sha512, ripemd160). If no data parameters specified, it returns a
digest of an empty value. If more than one data parameters are specified, they’re all used to calculate the result. Data
parameters may be of different types (strings, arrays, ArrayBuffers). Return value is of type ArrayBuffer.
There are also a few shortcut functions for popular algorithms: ’md5’, ’sha?1’, ’sha256’, ’sha512’. For example, these
calls are equivalent:

dgst = crypto.digest(’sha256’, data);

dgst = crypto.sha256(data);

var hmac = crypto.hmac(cipher, key, data, ...)

Returns hmac calculated using selected hash algorithm. Hash algorithms are the same as for digest() function.

Key parameter is required.

If no data parameters specified, it returns a HMAC of an empty value. If more than one data parameters are spec-
ified, they’re all used to calculate the result. Key and data parameters may be of different types (strings, arrays,
ArrayBuffers). Return value is of type ArrayBuffer.

There are also a few shortcut functions for popular algorithms: ’hmac256’, ’lhmac512’. For example, these calls are
equivalent:

142

12 The JavaScript Engine

dgst = crypto.hmac(’sha256’, key, data);
dgst = crypto.hmac256(key, data);

12.2.4 Sockets functions

Socket module allows easy access to TCP and UDP sockets from JavaScript. Both connection to distant ports and
listening on local are available. This API fully mirrors into JavaScript POSIX TCP/IP sockets. This can be used to
control third party devices like Global Cache or Sonos as well as emulating third party services.

To start communications one need to create socket and either connect it or listen it. onrecv method is called on
data receive from remote, while send is used to send data to remote side.
The example below dumps to log file response to http://ya.ru:80/ (raw HTTP protocol is used as an example).

var sock = new sockets.tcp();

sock.onrecv = function(data) {
debugPrint(data.bytelLength);

%

sock.connect(’ya.ru’, 80);

sock.send("GET / HTTP/1.0\r\n\r\n");

Here is an example of TCP echo server on port 83888:

var sock = new sockets.tcp();

sock.bind(8888);

sock.onrecv = function(data) {
this.send(data);

I8

sock.listen();

And echo server for UDP:

var sock = new sockets.udp();

sock.bind(8888);

sock.onrecv = function(data, host, port) {
this.sendto(data, host, port);

I8

sock.listen();

Detailed description of Socket API:

bind(ip, port) or bind(port) binds socket to port (integer number). ip should be a string like "192.168.0.1". If
omited "0.0.0.0" is used (bind on all IP addresses of all interfaces). Returns false on error.

connect(ip, port) connects to remote side ip:port. TCP sockets requires this call before sending data. For UDP
sockets it is optional, but once used allows to use send call instead of sendto call. Returns false on error.
listen() starts listening port (this is required not only for TCP, but for UDP too). Returns false on error.

close() initiate close of socket.

send(data) sends data to connected or accepted socket.

sendto(data, host, port) sends data to a non-connected UDP socket.

onrecv(data, host, port) called on new data receiption from remote side. For UDP sockets and connected TCP
sockets "this" object reffers to the socket itself, while for accepted TCP sockets "this" reffers to the client’s
individual objects.

onconnect(remoteHost, remotePort, localHost, localPort) called only for TCP sockets on new connection accept.
"this" reffers to the client individual socket object.

onclose(remoteHost, remotePort, localHost, localPort) called on socket close by remote or due to close() call.
Note that for TCP sockets this callback is called for client sockets on connection close and for binded listening
socket if close() is called. "this" object will be defined like in onrecv.

reusable() sets SO_REUSEADDR socket option to allow multiple bind() on the same port.

broadcast() sets SO_BROADCAST socket option to allow sending broadcast UDP messages.

143

12 The JavaScript Engine

« multicastAddMembership(multicastGroup) subscribe socket to multicast group
« multicastDropMembership(multicastGroup) unsubscribe socket from multicast group

12.2.5 WebSockets functions

Socket module also implements WebSockets (RFC 6455). WebSocket API is made to be compatible with browser
implementations (some rarely used functions are not implemented - see below).
The example below implements basic application using WebSockets client:

var sock = new sockets.websocket("ws://echo.websocket.org");

sock.onopen = function () {
debugPrint(’connected, sending ping’);
sock.send(’ping’);

}

sock.onmessage = function(ev) {
debugPrint(’recv’, ev.data);

}

sock.onclose = function() {
debugPrint(’closed’);

}

sock.onerror = function(ev) {
debugPrint(’error’, ev.data);

}

Next example shows basic application using WebSockets server:

var sock = new sockets.websocket(9009);

sock.onconnect = function () {
debugPrint(’client connected, sending ping’);

}

sock.onmessage = function(ev) {
debugPrint(’recv’, ev.data);
sock.send(’pong’);

}

sock.onclose = function() {
if (this === sock) {
debugPrint(’server websocket closed’);
}else {
debugPrint(’client disconnected’);
}
}

sock.onerror = function(ev) {
debugPrint(’error’, ev.data);

}

Detailed description of WebSocket API:

« socket.websocket(url, [protocol], [ssl_ca_filepath], [ssl_cert_filepath, ssl_private_key_filepath]) creates new
client WebSocket and connects to the specified URL (should be a string like "ws://host:port” or "wss://host:port"
for SSL channel). Optional protocol parameter can be used to specify protocol from server capabilities (comma
separated string), default is "default". To use a specific CA file instead of system default use ssl_ca_filepath. To
send client certificate use ssl_cert_filepath and ssl_private_key_filepath.

« socket.websocket(port) creates new WebSocket server on port.

« close() initiate close of WebSocket.

« send(data) sends data to WebSocket. data can be array, ArrayBuffer (sent as binary) or string (sent as text).

- onmessage(event) called on new data receiption from remote side. Object event contains only data property.
Other properties mentioned in RFC 6455 are not supported.

« onopen() or onconnect() called on connection establish. Compared RFC 6455 event parameter is not passed.

144

12 The JavaScript Engine

« onclose() called on WebSocket close by remote or due to close() call. For server side will be called on client
instance and on listening instance (use this to differenciate). Note that if close() is called before connection was
established, onclose() is not executed. Compared RFC 6455 event parameter is not passed.

« onerror(event) called on error. For example host or port unreachable. Note that new sockets.websocket(..) can
throw an exception on DNS resolution error or on network unreachable. Other errors will be reported via onerror.
Parameter event contains only propery data. Other properties from RFC 6455 are not implemented.

12.2.6 Other JavaScript Extensions
fs.list(folder)

This returns list of items in the folder or undefined if not folder is not existing.

fs.stat(file)

This returns one of the following values:
« 1) undefined if object does not exist or not readable
+ 2) object { type: ’file’, size: <size>} if it is a file
« 3) object { type: ’dir’ } if it is a folder

fs.load)JSON(filename)

This function reads a file from the file system and loads it into the memory. The file must contain a valid JSON object.
The only argument is the name of the file including relative pathname to the automation folder. The functions returns
the full JSON object or null in case of error.

fs.load(filename)

This function reads a file from the file system and returns it’s content as a string. The only argument is the name of
the file including relative pathname to the automation folder. The functions returns null in case of error.

executeFile(filename) and execute]S(string)

Loads and executes a particular JavaScript file from the local filesystem or executes JavaScript code represented in
string (like eval in browsers).

The script is executed withig the global namespace.

Remark: If an error occurred during the execution it won’t stop from further execution, but erroneous script will not be
executed completely. It will stop on the first error. Exceptions in the callee can be trapped in the caller using standard
try-catch mechanism.

system(command)

The command system() allows to execute any shell level command available on the operating system. It will return the
shell output of the command. On default the execution of system commands is forbidden. Each command executed
need to be permitted by putting one line with the starting commands in the file automation/.syscommands or in an
different automation folder as specified in config.xml.

Timers

Timers are implemented exactly as they are used in browsers. They are very helpfull for periodical and delayed
operations. Timeout/period is defined in milliseconds.

« timerld = setTimeout(function() , timeout)

« timerld = setInterval(function() , period)

« clearTimeout(timerld)

« clearInterval(timerld)

loadObject(object_name) and saveObject(object_name, object)

Loads and saves JSON object from/to storage. These functions implements flat storage for application with access to
the object by it’s name. No folders are available.

145

12 The JavaScript Engine

Data is saved in automation/storage folder. Filenames are made from object names by stripping characters but [a-
ZA-7Z0-9] and adding checksum from original name (to avoid name conflicts).

exit()

Stops JavaScript engine and shuts down Z-Way™ server

allowExternalAccess(handlerName) and listExternalAccess()

allowExternalAccess allows to register HTTP handler. handlerName can contain strings like aaa.bbb.ccc.ddd - in
that case any HTTP request starting by /aaa/bbb/ccc/ddd will be handled by a function aaa.bbb.ccc.ddd() if present,
otherwise aaa.bbb.ccc(), ... up to aaa(). Handler should return object with at least properties status and body (one can
also specify headers like it was in http.request module).

listExternalAccess returns array with names of all registered HTTP handlers.

Here is an example how to attach handlers for /what/timeisit and /what:

what = function() {
return { status: 500, body: "What do you want to know’ };

I8

what.timeisit = function() {
return { status: 200, body: (new Date()).toString() }

|5

allowExternalAccess("what");
allowExternalAccess("what.timeisit");

debugPrint(object, object, ...)

Prints arguments converted to string to Z-Way" console. Very usefull for debuggin. For convenience one can map
"console.log()’ to debugPrint().
This is how it was done in automation/main.js in Z-Way" Home Automation engine:

var console = {

log: debugPrint,

warn: debugPrint,

error: debugPrint,

debug: debugPrint,

logJS: function() {
var arr = [];
for (var key in arguments)

arr.push(JSON.stringify(arguments[key]));

debugPrint(arr);

12.2.7 Debugging JavaScript code

Change in config.xml debug-port to 8183 (or some other) turn on V8 debugger capability on Z-Way" start.

<config>
<debug—port>8183</debug—port>
</config>

node-inspector debugger tool is required. It provides web-based Ul for debugging similar to Google Chrome debug
console.

You might want to run debugger tool on another machine (for example if it is not possible to install it on the same
box as Z-Way™ is running on).
Use the following command to forward debugger port defined in config.xml to your local machine:
(for RaZberry USER is pi)
Install node-inspector debugger tool and run it:

146

12 The JavaScript Engine

Then you can connect to

http://IP_OF_MACHINE_WITH_NODE_INSPECTOR:8080/debug?port=8183
If debugging is turned on, Z-Way™ gives you 5 seconds during startup to reconnect debugger to Z-Way™ (refresh
the page of debugger Web Ul withing these 5 seconds). This allows you to debug startup code of Z-Way™ JavaScript
engine from the very first line of code.

12.3 The virtual device concept (vDev)

A virtual device is a data object within the JS engine. Virtual devices have properties and functions. Most virtual
devices represent a physical device or a part of a physical device but virtual devices are not limited to this. Virtual
devices can be pure dummy device doing nothing but pretenting to be a device (There is an app called ’Dummy
DEevice’ that works exactly like this). Virtual devices can also connect to services via TCP/IP.

The purpose of virtual devices is to unify the appearance on a graphical user interface and to unify the communication
between them. At the level of virtual devices and EnOcean controller can switch a Z-Wave switch and trigger a rule
in a cloud service.

12.3.1 Names and Ids

Every virtual device is identified by a simple string type id. For all virtual devices that are related to physical Z-Wave
devices the device name is auto-generated by the module (app) ’Z-Wave’ following this logic:

ZWayVDev_[Node ID]:[Instance ID]:[Command Class ID]:[Scale ID] The Node Id is the node id of the phys-
ical device, the Instance ID is the instance id of the device or ’0’ if there is only one instance. The command class
ID refers to the command class the function is embedded in. The scale id is usually ’0’ unless the virtual device is
generated from a Z-Wave device that supports multiple sensors with different scales in one single command class.
Virtual devices not generated by a Z-Wave device may have other Ids. They are either created by other physical device
subsystems such as 433MHz or EnOcean or they are generated by a module (app).

12.3.2 Device Type

Virtual devices can have a certain types. Table shows the different types plus the defines commands. Table shows
the list of current device types with their metrics and defines commands.

12.3.3 Access to Virtual Devices

Virtual devices can be access both on the server side using JS modules and on the client side using the JSON API. On
the client they are encoded into a URL style for easier handling in AJAX code. A typical client side command in the
vDev API looks like
http://YOURIP:8083/ZAutomation/api/vl/devices/ZWayVDev_6:0:37/command/off
"api’ points to the vDev API function, 'v1’ is just a constant to allow future extensions. The devices are referred by a
name that is automatically generated from the Z-Wave Device API. The vDev also unifies the commands ’command’
and the parameters, here ’off’.
On the server side the very same command would be encoded in a JavaScript style.

Listing 12.3: Access vDevs

vdevld = vdev.id;
vDev = this.controller.devices.get(vdevld);

vDevList = this.controller.devices. filter(function(x) {
return x.get("deviceType") === "switchBinary"; });

vDevTypes = this.controller.devices.map(function(x) {
return x.get("deviceType"); });

147

http://IP_OF_MACHINE_WITH_NODE_INSPECTOR:8080/debug?port=8183
http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev_6:0:37/command/off

12 The JavaScript Engine

deviceType Metrics Commands Examples
battery probeTitle,scaleTitle, - -
level, icon, title
doorlock level, icon, title open or close apiURL/devices/:deviceld/command/open
thermostat scaleTitle, min, max, | exact with get-param level apiURL/devices/:deviceld/command/exact? level=22.5

level, icon, title

switchBinary (Thermo-
stat)

level, icon, title

on, off or update

apiURL/devices/:deviceld/command/on

switchBinary

level, icon, title

on, off or update

apiURL/devices/:deviceld/command/on

switchMultilevel

level, icon, title

on Set(255), off Set(0), min Set(10),
max Set(99), increase Set(1+10),
decrease Set(1-10), update, exact +
get params level

apiURL/devices/:deviceld/command/exact? level=40

switchMultilevel (Blinds)

level, icon, title

up Set(255), down Set(0), up-
Max Set(99), increase Set(1+10),
decrease Set(1-10), startUp
StartLevelChange(0), start-
Down StartLevelChange(1),
stop StopLevelChange(), update,
excactSmooth + get params level

apiURL/devices/:deviceld/command/stop

sensorBinary probeTitle, level, icon, ti- | update apiURL/devices/:deviceld/command/update
tle
sensorMultilevel probeTitle, scaleTitle, | update apiURL/devices/:deviceld/command/update
level, icon, title
toggleButton level, icon, title on apiURL/devices/:deviceld/command/on
camera icon, title depends on installed camera - | apiURL/devices/:deviceld/zoomIn
could be: zoomln, zoomOut, up,
down, left, right, close, open
switchControl level, icon, title, change on, off, upstart, upstop, apiURL/devices/:deviceld/command/on
downstart, downstop, exact with
get-param level
text title, text, icon - -
sensorMultiline multilineType, title, icon, | depends on apps apiURL/devices/:deviceld/command/:cmd
level, (scaleTitle, ...)
switchRGB icon, title, color: level on, off, exact with get- apiURL/devices/:deviceld/command/exact?
1:255,8:255,b:255, params: red, green and blue red=20&green=240&blue=0

Table 12.1: vDev device types with metrics and commands

12.3.4 Virtual Device Usage / Commands

In case the virtual device is an actor it will accept and execute a command using the syntax:

Vdev.performCommand(,name of the command®) The name of the accepted command should depend on the
device type and can again be defined free of restrictions when implementing the virtual device. For auto-generated

devices derived from Z-Wave the following commands are typically implemented.

1. ’update’: updates a sensor value

2. ’on’: turns a device on. Only valid for binary commands
3. ’off’: turns a device off. Only valid for binary commands
4. ’exact’: sets the device to an exact value. This will be a temperature for thermostats or a percentage value of

motor controls or dimmers

12.3.5 Virtual Device Usage / Values

Virtual devices have inner values. They are called metrics. A metric can be set and get. Each virtual device can define

its own metrics. Metrics can be level, title icon and other device specific values like scale (%, kWh, ...)

vDev.set ("metrics:..." , ...);
vDev.get (" metrics :...");

12.3.6 How to create your own virtual devices

A Virtual Device (Vdev) is an instance of a VirtualDevice class’ descendant which exposes set of metrics and commands
(according to it’s type/subtype). Virtual devices are the only runtime instances which is controllable and observable

through the JS API.

Technically, VDev is a VirtualDevice subclass which concretize, overrides or extends superclass’ methods.

Step 1. Define a VirtualDevice subclass

// Important: constructor SHOULD always be successful

BatteryPollingDevice = function (id, controller) {

12 The JavaScript Engine

/I Always call superconstructor first
BatteryPollingDevice.super_.call(this, id, controller);

/! Define VDevs properties
this.deviceType = "virtual";
this.deviceSubType = "batteryPolling";
this.widgetClass = "BatteryStatusWidget";

// Setup some additional metrics (many of them is setted up in a base class)

this.setMetricValue("someMetric", "someValue");

}

inherits(BatteryPollingDevice, VirtualDevice);

VDev class should always fill in the deviceType property and often fill in the deviceSubType property.

If the particular VDev class can be controller by the client-side widget, it should define widget’s class name in the
widgetClass property.

Step 2. Override performCommand() method

BatteryPollingDevice.prototype.performCommand = function (command) {
var handled = true;

if ("update" === command) {
for (var id in zway.devices) {
zway.devices[id].Battery && zway.devices[id].Battery.Get();

}
}else {

handled = false;
}

return handled ? true :
BatteryPollingDevice.super_.prototype.performCommand.call(this, command);

}

VDev itself mostly needed to handle commands, triggered by the events, system or the API.

In the example above you could see, that this VDev is capable of performing "update" command. But base class can
be capable of performing some other commands, so the last | ine calls superclass’ performCommand() method if the
particular command wasn’t handled by the VDev itself.

This extensibility provides the possibility to create a VDev class tree. Take a look at ZWaveGate module as an example
of such tree.

Step 3. Instantiate your VDev by the module

// ...part of the BatteryPolling.init() method
executeFile(this.moduleBasePath()+"/BatteryPollingDevice.js");
this.vdev = new BatteryPollingDevice("BatteryPolling", this.controller);

First line of code is loads and executes apropriate .js-file which provides BatteryPollingDevice class.
Secnd line instantiates this class.

The last line calls controller’s registerDevice method to register and VDev instance.

Step 4. Register device

Listing 12.4: Register Device

vDev = this.controller.devices.create(vDevld, {
deviceType: "deviceType",
metrics: {
level: "level",
icon: "icon from lib or url"
title: "Default title"
}
}, function (command, ...) {
// handles actions with the widget

bk
Step 5: Unregister device

Devices can be deleted or unregistered using the following command:

149

12 The JavaScript Engine

this.controller.devices.remove(vDevld)

12.3.7 Binding to metric changes

The metric - the inner variables of the vDev a changed by the system automatically. In order to perform certain
functions on these changes the function needs to be bound to the change to the vdev. The syntax for this is

vDev.on(’change:metrics:...", function (vDev) ...); Unbinding then works as one can expect:

vDev.off(’change:metrics:..”, function (vDev) ...)

12.4 The event bus

All communication from and to the automation modules is handled by events. An event is a structure containing
certain information that is exchanged using a central distribution place, the event bus. This means that all modules
can send events to the event bus and can listen to event in order to execute commands on them. All modules can ’see’
all events but need to filter out their events of relevance. The core objects of the automation are written in JS and they
are available as source code in the sub folder ’classes’:

« AutomationController.js: This is the main engine of the automation function

« AutomationModule.js: the basic object for the module
The file main.js is the startup file for the automation system and it is loading the three classes just mentioned. The
subfolder /lib contains the key JS script for the Event handling: eventemitter.js.

12.4.1 Emitting events

The ’Event emitter’ emits events into the central event bus. The event emitter can be called from all modules and
scripts of the automation system. The syntax is:

controller.emit(eventName, argsl, arg2, ...argn)
The event name ’eventName’ has to be noted in the form of ’XXX.YYY’ where XXX is the name of the event source
(e.g. the name of the module issuing the event or the name of the module using the event) and "YYY’ is the name
of the event itself. To allow a scalable system it makes sense to name the events by the name of the module that is
supposed to receive and to manage events. This simplifies the filtering of these events by the receiver module(s).
Certain event names are forbidden for general use because they are already used in the existing modules. One example
are events with the name cron. XXXX that are used by the cron module handling all timer related events.
Every event can have a list of arguments developers can decide on. For the events used by preloaded modules (first
and foremost the cron module) this argument structure is predefined. For all other modules the developer is free to
decide on structure and content. It is also possible to have list fields and or any other structure as argument for the
event
One example of an issued event can be

emit(imymodule.testevent), jTest), levently, jevent2)])

12.4.2 Catching (binding to) events

The controller object, part of every module, offers a function called ’on()’ to catch events. The ’on(name, function())’
function subscribes to events of a certain name type. If not all events of a certain name tag shall be processed a further
filtering needs to be implemented processing the further arguments of the event. The function argument contains a
reference to the implementation using the event to perform certain actions. The argument list of the event is handed
over to this function in its order but need to be declared in the function call statement.

this.controller.on (“mymodule.testevent”, function (name,eventarray))
The same way objects can unbind from events:

this.controller.off (“mymodule.testevent”, function (name,eventarray));

12.4.3 Notification and Severity

Notifications are a special kind of event to inform the user on the graphical user interface or out-of-band.. This means
that normal events are typically describes with numbers or ids while notifications contain a human readable message.
The Ul can be notified on the certain events.

150

12 The JavaScript Engine

"non " on

this.controller.addNotification("....severity...", "....message....", "....origin...."); The parameters define
« severity is error, info, debug;
« origin describes which part of the system it is about: core, module, device, battery.

The controller can act on notifications or disable them.

this.controller.on(’notifications.push’, this.handler);

this.controller.off(’notifications.push’, this.handler);

12.5 Modules (for users called ’Apps’)

Beside the core functions encoded into the JS core there are extensions to this code called modules. Modules extend
the JS core by providing internal or external (visible to the user) functions.

Each modules code is located in a sub directory of the sub folder module as described in chapter[11.4.1l The name

of the subfolder equals the name of the module. The sub folder contains files to define the behavior of the module.
ModuleName

Module.json: The Manifest file of the Module
index.js: The main JS file
htdocs: ressources accessible by the web server

lang: translation into local languages

12.5.1 Module.json

This file contains the module meta-definition used by the AutomationController. It must be a valid JSON object with
the following fields (all of them are required):
« autoload — Boolean, defines will this module automatically instantiated during Home Automation startup.
« singleton — Boolean, defines this module can be instantiated more than one time or not.
« defaults — Object, default module instance settings. This object will be patched with the particular config
object from the controller’s configuration and resulting object will be passed to the initializer.
- actions — Object, defines exported module instance actions. Object keys are the names of actions and values
are meta-definitions of exported actions used by AutomationController and APl webserver.
« metrics — Object, defines exported module metrics.
All configuration fields are required. Types of the object must be equal in every definition in every case. For instance,
if module doesn’t export any metric corresponding key value should be and empty object “”.

12.5.2 index.js

This script defines an automation module class which is descendant of AutomationModule base class. During initial-
ization the module script must define the variable ’_module’ containing the particular module class.
Example of a minimal automation module:

Listing 12.5: Minimal Module

function SampleModule (id, controller) {
SampleModule.super_.call.init(this, id, controller);

this.greeting = "Hello,World!";

}

inherits(SampleModule, AutomationModule);
_module = SampleModule;

SampleModule.prototype.init = function () {
this.sayHello();

}

SampleModule.prototype.sayHello = function () {

151

12 The JavaScript Engine

debugPrint(this.greeting);
}

SampleModule.prototype.stop = function () {
this.sayByeBye();
}

The first part of the code illustrates how to define a class function named SampleModule that calls the superclass’
constructor. Its highly recommended not to do further instantiations in the constructur. Initializations should be
implemented within the ’init’ function.

The second part of the code is almost immutable for any module. It calls prototypal inheritance support routine and
it fills in _module variable.

The third part of the sample code defines module’s init() method which is an instance initializer. This initializer must
call the superclass’s initializer prior to all other tasks. In the initializer module can setup it’s private environment,
subscribe to the events and do any other stuff. Sometimes, whole module code can be placed withing the initializer
without creation of any other class’s methods. As the reference of such approach you can examine AutoOff module
source code.

After the init function a module may contain other functions. The ’sayHello’ function of the Sample Module shows
this as example.

12.5.3 Available Core Modules

All modules in Z-Way™ are designed the same way using the same file structure but they serve different purposes
and they are of different importance:

« Core Module are modules that provide essential parts of the Z-Way™ system. They run from the beginning and
should not be terminated without good reason. Normal users will not even see them in the list of active apps.
Users with management privilege can set a checkbox in their to unhide them.

« Standard Modules can be started and stopped by the user. they are already in the subfolder ’'modules’ and can
not be deleted.

« Modules from the Online Service must be downloaded first before they can be used. They can be started,
stopped and even removed. They are stored in the folder "'userModules’.

The two core modules are worth to be explained in detail:

Cron, the timer module

All time driven actions need a timer. The Z-Way™ automation engine implement a cron-type timer system as a module
as well. The basic function of the cron module is

« It accepts registration of events that are triggered periodically

« It allows to de-register such events.
The registration and deregistration of events is also handled using the event mechanism. The cron module is listening
for events with the tags ‘cron.addTask’ and ’cron.removeTask’. The first argument of these events are the name of the
event fired by the cron module. The second argument of the ’addTask’ event is an array desricing the times when this
event shall be issued. It has the format:

« Minute [start,stop, step] or 0-59 or null

 Hour [start,stop, step] or 0-23 or null

« weekDay [start,stop, step] or 0-6 or null

« dayOfMonth [start,stop, step] or 1-31 or null

« Month [start,stop, step] or 1-12 or null
The argument for the different time parameters has one of three formats

« null: the event will be fired on every minute or hour etc.

« single value: the event will be fired when the value reaches the given value

« array [start, stop, step]: The event will be fired between start and stop in steps.
The object

{minute : null, hour : null, weekDay : null, day : null, month : null}

will fire every minute within every hour within every weekday on every day of the month every month. Another

example of an event emitted towards the cron module for registering an timer event can be found in the Battery
Polling Module:

Listing 12.6: Registering a Battery Polling Command
this.controller.emit("cron.addTask", "batteryPolling.poll", {

152

12 The JavaScript Engine

minute: 0,

hour: 0,

weekDay: this.config.launchWeekDay,
day: null,

month: null

D;

This call will cause the cron module to emit an event at night (00:00) on a day that is defined in the configuration
variable this.config.launchWeekDay, e.g. 0 = Sunday.

The ’cron.removeTask’ only needs the name of the registered event to deregister.

Z-Wave

The whole mapping of Z-Wave devices into virtual devices is handled by a module called ’ZWAvE’. This module is
quite powerful. It does not only manage the mapping but handles various Z-Wave specific functions such as timing
recording, etc.

153

13 Special topics for Developers

13.1 Authentication

In order to access APl one need to authenticate itself. Z-Way'" uses sessions to authenticate users. Session can be
obtained by sending login and password in JSON format using POST to URL
/ZAutomation/api/vl1/login
User credentials should look like {"login":"admin", "password":"admin"}
In return the session will be sent in two forms:
« as data.sid field in JSON structure,
+ as a cookie called ZWAYSession.

Example of successful login will look like:

Listing 13.1: Successful login reply

"data": {

"sid": "ba69cb5b—b2fd—5ce0—5b75—9bae3e8bc369",

"id": 1,

"role": 1,

"name": "Administrator”,

"lang": "en",

"color": "#dddddd",

"dashboard": [],

"interval": 2000,

"rooms": [

0

1,

"hide_all_device_events": false,

"hide_system_events": false,

"hide_single_device_events":]
3
"code": 200,
"message": "200 OK",
"error": null

Listing 13.2: Wrong login/password reply

"data": null,

"code": 401,

"message": "401 Unauthorized",

"error": "User login/password is wrong."

}

One obtained, the session can be sent to the server via cookie (as set by Z-Way™) or via HTTP header.
An elegant way to execute a command using URL including authentication is:

As jquery function the authentication will look like this:
Listing 13.3: Login with jQuery

$(Cimg’).click(function() {

$.ajax({

url: "https://find.z—wave.me/ZWave.zway/Run/devices[3].Basic.Set(255)",
username: "56033/admin",

password: "pwd",

xhrFields: { withCredentials: true }

E

b3

154

/ZAutomation/api/v1/login

13 Special topics for Developers

{"singleton" : false,

"dependencies": [],

Boolean to set if there can be multiple Instances of the mod-
ule allowed or not

An array list of all module names from which this module is
dependent. Modules in this list should be ’singleton’ Thew
module cannot be instantiated if at least one of the modules
in the list does not have an instance.

n,on

"category": "automation_basics",

The app category this module is shown in the
app store. Known app store categories are: ’ba-
sic_gateway_modules’, ‘legacy_products_workaround’,
‘support_external ui’, ’support_external_dev’, ’automa-
tion_basic’, ’device_enhancements’, ’developers_stuff’,
"complex_applications’, ’automation’, ’security’, ’periph-
erals’, ’surveillance’, ’logging’, ’scripting’, ’scheduling’,
‘climate’, ’environment’, ’scenes’, ‘notifications’, tagging’

"author": "ZWave.Me",

Author name of the Module

"homepage": "http://razberry.zwave. me",

If you have a news homepage, it can be linked here.

w,on:

"icon": "icon.png",

Name of the icon which is shown for this module on the Ul

"moduleName": "AppClassName",

Module name have to the same like the class reference

"version": "1.0.0",

Version number of this module

"maturity": "beta’”,

Status if the app is still in development or released

"repository": { Repository optional “"type": | Address of the repository

"git, Kind of the repository "source":

https://github.com/ZWaveMe/ homeautomation

3

"defaults” : { "title" : "__m_title_ ", The title placeholder for the Language files

"description” : { "_m_descr__"},

The description placeholder for the language files

"schema" : {},

Description of the data structure of the form for instantiat-
ing the module. See explanation of schema for details

"options" : {}}

Showing options of the setup form

"description” : { "_m_descr__"},

The description placeholder for the language files

Table 13.1: Module.json details

13.2 How to write own Apps for Z-Way ™"

According to Chapter apps have two core files:
« module.js
« index.js

The following chapter explains these two files more in detail.

13.2.1 module.js

Module.js defines the general behavior of the app and the interface to the user side. Table shows the structure of
the file module.js with an explanation of each line item.

13.2.2 Schema

The schema is a JSON Structure to define the user interface of the module. It lists all input parameters and options
to be shown in the setup dialog of the app:

Listing 13.4: Schema Structure
{

"schema": {
"type": "object”,
"properties": {

}
}

——

155

13 Special topics for Developers

The structure of the schema is the following. Inside the ’properties’ space the single ’properties’ can be defined. They
become the parameter of the module during the initiation and they are shown as configuration parameters in the
setup dialog. There are different types of input parameters:

Primitive data types like integer, float or string

Listing 13.5: Schema Structure Simple Type
{

//Parametername

"name":

"type": "array”,

"items": {

"title": "Device",

"type": "radio”,

//array of choosable items
"enum”: ["Adult", "Child"],
"default": "Child",
"required": true

}

b

//Parametername

"name":

"type": "integer",
"required": true

b

}

Name Spaces - Enumerations with a choice

Listing 13.6: Schema Structure Enumerations with a choice

{

//Parametername
"name":
"field": "enum",

"datasource": "namespaces”,
//special namespacedestination

non

"enum"”: "namespaces:devices_all:deviceld",
"required”: true
2

Name spaces refer to the internal Z-Way"" structure. It allows to list elements from the Z-Way"" data model and filter
it. The statement "namespaces:devices_all:deviceId" will offer a selection of all devices.
Namespaces can also be combined like
namespaces:devices_doorlock:deviceld, namespaces:devices_switchBinary:deviceld
which means devices doorlock and all binary switches. Namespaces can also be REST paths like
server:port/vl/namespaces/{devices_DEVICETYPE}.{PATH}

13.2.3 The file index.js

Thew file index.js contains the application as such. It can include other js files is needed but Z-Way™ will always look

for a index js file to load first. Table[13.2list the basic structure of index.js with the minimum functions.

More information e.g. about the list of probe types etc. you find on
http://docs.zwayhomeautomation.apiary.1io/

13.3 Write you own Device Description Files

This part of the manual is not yet published because the service for creating own Device Description Files is not yet
available.

156

namespaces:devices_doorlock:deviceId,namespaces:devices_switchBinary:deviceId
server:port/v1/namespaces/{devices_DEVICETYPE}.{PATH}
http://docs.zwayhomeautomation.apiary.io/

13 Special topics for Developers

function AppClassName (id, controller] AppClassName.super_.call (this, Constructor method: This line is a call of the Supercon-

id, controller); structor. It has always to be first line of the constructor

inherits (AppClassName, AutomationModule); inheration call:

_module = AppClassName; The definition of the class reference

AppClassiame . prototype. init = function (config) Initialization method: Variable to refer to in the class in own

AppClassName. super_.prototype. init.call(this, config); var self = methods (this is context dependent in JavaScript). Here

tnis; ; you can register ’listeners’ for the event bus. For details
on event bus please refer to chapter[12.4]

AppClassName . prototype.stop = function () Destroy method: Here you have to unregister ’listeners’.

AppClassName.super_.prototype.stop.call (this);;

AppClassNane . prototype.Methodname= function (parameter) Own Methods: Write your own Methods here.

Table 13.2: Details of index.js

13.4 Extending EnOcean

How to include a new EnOcean Device (example Hoppe Door handle)
(1) Check if the profile is in . Not that you just need to know the profile the
given product supports. There is no way to find out automatically!

Listing 13.7: EnOcean Profile Entry

<Profile rorg="0xf6" func="0x10" type="0x00" rorgDescription="RPS Telegram"
funcDescription="Mechanical Handle" typeDescription="Window Handle">
<Field offset="0" size="4" name="windowHandle" type="int"
description="Movement of the window handle" short="WIN" />

</Profile>

(2) Add the device record of the device to

Here the rorg, funcid and type are set.
Now the device record will be created and the right values are changed on message reception. Now you need to make
sure the right element is rendered and updated. Thisisin
First add a filter to catch the events and call the correct function:

Listing 13.8: Catch Device IDs

if (matchDevice(0xf6, 0x10, 0x01)) {
// Hoppe Window handle
windowHandle("contact", "window", "Windor Handle");

}

now you add the function that handles the value changes and renders the element accordingly. For the window handle
we use the binary sensor element but overwrite the status information according to the information of the window
handle moves.

Listing 13.9: Handle Device

function windowHandle(dh, type, title) {
var vDev = self.controller.devices.create({
deviceld: vDevldPrefix + type,

defaults: {
deviceType: 'sensorBinary’,
metrics: {
probeTitle: type,
scaleTitle: ,
icon: type,
level: 7,
title: title
}
3
overlay: {},

handler: function(command) {},
moduleld: self.id

D;

157

13 Special topics for Developers

if (vDev) {
self.dataBind(self.gateDataBinding, self.zeno, nodeld, dh,
function(type) {
try {
if (this. handleValue == 13)
vDev.set("metrics:level”, "tilt");
if (this. handleValue == 15)
vDev.set("metrics:level”, "closed");
if (this. handleValue == 12 || this. handleValue == 14)
vDev.set("metrics:level”, "open");
} catch (e) {}
}, "value");

158

A CE Declarations

CE-Declaration of Conformity
EG-Konformitatserklarung

We, the manufacturer/ importer: Z-Wave Europe GmbH

Wir, der Hersteller/ Importeur Antonstr. 3
D-09937 Hohenstein-Ernstthal
Tel.: +49(0)3723 8099050

declare under our sole responsibility that the following product...
erkldren in alleiniger Verantwortung, dass das weiter unten genannte Produkt...

Name of product, RaZberry2 EU
Produktbezeichnung: RaZberry2 EU
Type/ Model, Typenbezeichnung: ZMEERAZ2
Trademark, Handelsmarke: Z-Wave.Me
Year of manufacture, Baujahr: 2017

to which this declaration relates, is, when used according to specification, in conformity with the
technical requirements of the standards and the provisions of the essential requirements of the
Directives detailed below:

auf das sich diese Erklarung bezieht, bei sachgerechter Anwendung den nachfolgend angegebenen
Richtlinien der Europaischen Union und den zur Erlangung des CE-Zeichens erforderlichen Normen

entspricht.

Directives/ Richtlinien: LVD 2014/35/EU
EMC/ EMV 2014/30/EU
RED 2014/53/EU
RoHS 2011/65/EU

The following harmonized standards were applied:
Folgende harmonisierte Normen wurden u.a. angewandt:

RoHS EN 50581:2012
Risk evaluation/ Risikobewertung EN 12100
Immunity requirements/ Immunitatsanforderungen: EN 301 489-1V2.1.1, EN 301 489-3V2.1.1,
(Art. 3(1)(b)) EN 61000-6-3:2007+A1:2011,
EN 61000-6-1:2007
EMV, ERM (Art. 3(2)): EN 300220-1Vv3.1.1:2017,
EN 300 220-2 V3.1.1:2017
safety requirements/ Sicherheitsanforderungen: EN 62368-1:2014 + AC:2015, EN 62479:2010

(Art. 3(1)(a))

Name of the authorized representative: Dr. Chrlstian Patz, Chief Executive Officer

Name des Dokumentationsbevollméchtigten
/ﬁ /J

Hohenstein-Ernstthal, ... 3 [..‘ /'/',),
Date/ Datum Slgnature/ Unterschrift

This declaration is in accordance with the directives but contains no assurance of properties.

159

A CE Declarations

CE-Declaration of Conformity
EG-Konformitatserklarung

We, the manufacturer/ importer: Z-Wave Europe GmbH

Wir, der Hersteller/ Importeur Antonstr. 3
D-09937 Hohenstein-Ernstthal
Tel.: +49(0)3723 8099050

declare under our sole responsibility that the following product...
erkldren in alleiniger Verantwortung, dass das weiter unten genannte Produkt...

Name of product, Z-Wave USB Stick

Produktbezeichnung: Z-Wave USB Stick

Type/ Model, Typenbezeichnung: ZMEEUZB1, ZMEUUZB1, ZMEEUZBWAY, ZMEEUZBWD
Trademark, Handelsmarke: Z-Wave.Me

Year of manufacture, Baujahr: 2017

to which this declaration relates, is, when used according to specification, in conformity with the
technical requirements of the standards and the provisions of the essential requirements of the
Directives detailed below:

auf das sich diese Erklarung bezieht, bei sachgerechter Anwendung den nachfolgend angegebenen
Richtlinien der Europaischen Union und den zur Erlangung des CE-Zeichens erforderlichen Normen
entspricht.

Directives/ Richtlinien: LVD 2014/35/EU
EMV 2014/30/EU
RED 2014/53/EU
RoHS 2011/65/EU

The following harmonized standards were applied:
Folgende harmonisierte Normen wurden u.a. angewandt:

Risk evaluation/ Risikobewertung EN 12100
Immunity requirements/ Immunitatsanforderungen: EN 301 489-1V2.1.1, EN 301 489-3 V2.1.1,
(Art. 3(1)(b)) EN 61000-6-3:2007+A1:2011,
EN 61000-6-1:2007
EMV, ERM (Art. 3(2)): EN 300 220-1V3.1.1:2017,
EN 300 220-2 V3.1.1:2017
safety requirements/ Sicherheitsanforderungen: EN 62479:2010,
(Art. 3(1)(a)) EN 60950-1:2006 + A11:2009 + A12:2011 +
A1:2010 + A2:2013
RoHS EN 50581:2012
Name of the authorized representative: Dr. Christian Patz, Chief Executive Officer

Name des Dokumentationsbevollmachtigten

Hohenstein-Ernstthal, X ! A\ U =

Date/ Datum Signature/ Unterschrift

This declaration is in accordance with the directives but contains no assurance of properties.

160

B User Interface Fundamentals - Slides

The Smart Home User
Experience Dilemma

Prof. Dr-Ing. Christian Paetz
Chemnitz University
Munich, Nov 2014

Problem statement

* There is no commonly accepted best practise
in managing a Smart Home
(like the X of closing a window on a PC)

* There is no standard apartment or home
(every home has different style, naming and
position of windows, doors, light, ...)

* There is no standard set of use cases for the
Smart Home but complexity

How to solve this

* Learn from the young ones - Elementary
School
— Keep it simple in the beginning
— Allow early success on little things
— Repeat, repeat and again repeat
* Learn from the old ones - Modeling science
theory (*)
— Readable yet formal
— Information hiding
— Separation of concerns
— Establish basic set of rules and stick to it.

Ramesh Bharadwaj, C: Heitmeyer: Applying the SCR Requirements Specification Method to Practial Systems: A Case
Study, 215t Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt, Dec. 1996

Solomon Golomb: Models (1968)

* Don’t apply a model until you
understand the simplifying
assumptions on which it is based and
can test their applicability.

Distinquish at all times between the
model and the real world.

The purpose of notation and
terminology should be to enhance
insight and facilitate computation —
not to impress or confuse the
uninitiated

What does this mean to us

*Elements
*Events
*Apps

Elements

* All functions in a smart home, regardless of
action or information are displays in one
element each
— “All elements are created equal”

— Elements have same size, same color, same
extensions, same configuration

— Whether the function is performed by a physical
device or a virtual device or a special function or
or or, its always one single element

How to manage Elements

* Sea of elements

* Small number of managed elements call for
hierarchy, large numbers of elements call for
search (see yahoo in the first days versus
google today)

There are only two groupings
— Dashboard — the important elements
— Rooms — all elements assigned by room

Events

Every change of a status (actor) or a value
(sensor) is an event

1«

,All events are created equa

Events can be filtered by device, root cause, etc.
All Events have same size, same color, same
information

Whether the event is generated by a physical

device or a virtual device or a special function or
oror ..., its always one single event

161

B User Interface Fundamentals - Slides

Apps

* Every function above and beyond accessing
information or controlling devices is an

application, short app

Apps can do

— Aggregation of information based on other
information

— Information from outside the home (e.g. weather)
— Aggregated action (scenes)

— Automation (e.g. if -> then)

— Complex usage of the devices (e.g. alarm system)

Apps Display

¢ All apps are displayed equal
—In app store

— In local app repository
— In list of active apps

* Apps can be added by users, installers,...

* Apps can be created by users, developers, ...

Consoles

The Smart Home is used (controlled,
configured and monitored) in multiple way,
parallel and simultaneously

— Web browser

—iPAD

— Phone

— Wall Panel

— Local control on device

All displays are created equal

* Web, ©® © © 60 ®© ®
. Pad, = R e
* Phone 9 & & 06 © O
® ®@ YO 6 &
= (=} ©
o= &

@

162

C Z-Way ' Data Model Reference

C.1 Data

This is the description of the data object (called Data Holder or DH).
General note: Z-Way™ objects and it’s decendents are NOT simple JS objects, but native JS objects, that does not
allow object modification.

+ name: Name of data tree element

« updated: Update time

« invalidated: Invalidate time

« valueOf(): Returns value of the object (can be omitted to get object value)

« invalidate(): Invalidate data value (mark is as not valid anymore)

« bind(function (typel, arg]) ..., [arg, [watchChildren=false]]): Bind function to a change of data tree element of

its descendants
« unbind(function): Unbind function bind previously with bind()

C.2 JS object zway

« Description: zway is the Z-Wave part of the object tree
« Syntax: zway.X with X as child object
« Child objects
- controller: controller object, see below for details
— devices: devices list, see below for details
- version: Z-Way.JS version
— isRunning(): Check if Z-Way" is running
— isldle(): Check if Z-Way" is idle (no pending packets to send)
— discover(): Start Z-Way" discovery process
— stop() : Stop Z-Way"™
— InspectQueue() : Returns list of pending jobs in the queue.
= item: [timeout, flags, nodeld, description, progress, payload]
= flags: [send count, wait wakeup, wait security, done, wait ACK, got ACK, wait response, got response,
wait callback, got callback]
— ProcessPendingCallbacks(): Process pending callbacks (result of setTimeout/setInterval or functions called
via HTTP JSON API)
— bind(function, bitmask): Bind function to be called on change of devices list/instances list/command
classes list
— unbind(function) : Unbind function previously bind with bind()
— all function classes in[E|are also methods of this data object

C.3 controller

You can access the data elements of "controller" in the Z-WAVE EXPERT USER INTERFACE in menu Network >
Controller Info USil’]g the buttons [Show controller data] and [Show controller’s device data.]

« Description: Controller object

« Syntax: controller.X with X as child object

« Child objects

— data: Data tree of the controller

+ homeld: Home ID of the controller
= nodeld: Node ID of the controller
« SISPresent: is SIS available (if TRUE, SUCNodeld is a SIS, otherwise it is SUC)
» SUCNodeld: Node ID of SUC or SIS or 0 if no SUC/SIS present
« isInOtherNetworks: is controller the original Primary or it is in other’s network
« isPrimary: can controller include devices (Primary or Inclusion controller)

163

C Z-Way" Data Model Reference

isRealPrimary: is controller Primary Controller or SIS in the network

isSUC: is SUC present

libType: Z-Wave library type

frequency: current frequency of the transceiver

controllerState: current network management state of the controller
lastExcludedDevice: Node ID of last excluded device

lastIncludedDevice: Node ID of last included device

securelnclusion: shall inclusion be done using Security

caps: Z-Way"" license information

softwareRevisionVersion: version of Z-Way" build

softwareRevisonDate: date of Z-Way™ build

softwareRevisionld: git commit of Z-Way™ build

manufacturerld / manufacturerProductld / manufacturerProductTypeld: IDs to identify the transceiver
hardware

vendor: name of hardware vendor

APIVersion: Version of the Serial API of the transceiver firmware

SDK: Z-Wave SDK version of the transceiver firmware

ZWVersion: ZWave Version (firmware)

ZWaveChip: Serie of the transceiver Z-Wave chip

ZWlibMajor / ZWIlibMinor: library version

capabilities: array of Function Class IDs supported by the transceiver firmware
functionClasses: ordered array of IDs of Function Classes

functionClassesNames: ordered array of Names of Function Classes

uuid: Z-Way" transceiver firmware unique ID

memoryGetAddress: address of last data stored in memoryGetData read by one of memory read
function

memoryGetData: last data read by one of memory read function

countjobs: shall job be counted (nonManagementjobs and devices[x].data.queueLength)
nonManagementJobs: number of non-management jobs in the queue

deviceRelaxDelay: time in 10ms to wait before sending next command to same device (configurable
in Defaults.xml)

incomingPacket: last incoming packet from Z-Wave network

curSerial APIAckTimeout10ms: timing parameter of Serial API

curSerial APIBytetimeout10ms: timing parameter of Serial API

oldSerial APIAckTimeout10ms: previous timing parameter of Serial API
oldSerialAPIBytetimeout10ms: previous timing parameter of Serial API

Function classes as shown in section[E]are called als object functions of the data object zway.controller.

C.4 Devices

The devices object contains the array of the device objects. Each device in the network - including the controller itself
- has a device object in Z-Way" .
« Description: list of devices
« Syntax: X with X as child object
« Child objects
m : Device object
— length: Length of the list
- SaveData(): Save Z-Way " Z-Wave data for hot start on next run (in config/zddx/HOMEID-DevicesData.xml)

C.5 Device

The data object can be accesses in the Z-WAVE EXPERT USER INTERFACE in advanced mode of ’Configuration’

« Description: the device object
« Syntax: device[n].X with X as child object
« Child objects
— id: (node) Id of the device
— Data: Data tree of the device
» SDK: SDK used in the device firmware

164

C Z-Way" Data Model Reference

» ZDDXMLFile: file of the Devcie Description Record
« ZWLib: Z-Wave library used in the device firmware
« ZWProtocolMajor / ZWProtocolMinor: Z-Wave protocol version
= applicationMajor / ApplicationMinor: Application Version of devices firmware
« manufacturerld / manufacturerProductld / manufacturerProductTypeld: ids used to identify the de-
vice
= basicType: Z-Wave Basic Type
= genericType: Z-Wave Generic Type
« specificType: Z-Wave Specific Type
« deviceTypeString: verbal Z-Wave Device Class
« vendorString: verbal vendor name
« nodelnfoFrame: Node Information Frame (NIF) array
« isListening: is always listening
= isAwake: is currently awake
= keepAwake: shall the device be kept awake even if there is nothing to send to it
= isRouting: is abale to send routed unsolicited packets
= sensor1000: device is a FLiRS with 1000 ms wakeup
« sensor250: device is a FLiRS with 250 ms wakeup
= isVirtual: is virtual device from a bridge controller
= option: are optional Command Classes present in addition to mandatory for this Device Class
= infoProtocolSpecific: internal information about the device
= neightbours: list of neighbour nodes
« givenName: name for Expert Ul
« isFailed: is failed
« failureCount: number of tries since last device failed
= lastRecevied: timestamp of last packet received
= lastSend: timestamp of last sent operation
« lastPacketInfo: structure with deliveryTime, delivered and packetLength information about last packet
sent
= queuelength: length of device specific send queue (if countjobs is enabled)
« lastNonceGet: internal
- instances: ilnstances list of the device
— RequestNodelnformation(): Request NIF
— RequestNodeNeighbourUpdate(): Request routes update
— InterviewForce(): Purge all command classes and start interview based on device’s NIF
— RemoveFailedNode(): Remove this node as failed. Device should be marked as failed to remove it with
this function.
- SendNoOperation(successCallback = NULL, failureCallback = NULL): Ping the device with empty packet
(even if device is not reachable successCallback is called - use isFailed to check device availability)
— LoadXMLFile(file): Load new Z-Wave Device Description XML file. See http://pepper1.net/zwavedb/
— GuestXML(): Return the list of all known Z-Wave Device Description XML files with match score. [score,
file name, brand name, product name, photo]
— WakeupQueue(): Pretend the device is awake and try to send packets
— AssignReturnRoute(target): Send device new routes to target node
- DeleteReturnRoute(): Clear routes in device
— AssignSUCReturnRoute(): Inform device about SUC and route to reach it

C.6 Instances

Each device may have multiple instances (similar functions like switches, same type sensors, ...) If only one instance
is present the id of this instance is 0. Command classes are located in instances only.
« Description: list of instances
« Syntax: device[n].instance[m].X with X as child object
« Child objects
m : instance object
- length: Length of the list
— commandClasses: list of command classes of this instance. In case there is only one instance, this is
equivalent to the list of command classes of the device. For details see below.
- Data: data object of instance

165

C Z-Way" Data Model Reference

» dynamic: flag if instance is dynamic
« genericType: generic Z-Wave device class of instance
« specificType: specific Z-Wave device class of instance

C.7 CommandClass

This is the Command Class object. It contains public methods and public data elements that are described in chapter
Dl
« Description: Command Class Implementation
« Syntax: device[n].instance[m].commandclass[id].X with X as child object
« Child objects
— id: Id of the Command Class of the instance of the device
— data: Data tree of the Command Class
= interviewCounter: number of attempts left until interview is terminate even if not successful
« interviewDone: flag if interview of the command class is finished
= security: flag if Command Class is operated under Security Command Class
« version: version of the Command Class implemented in the device
= supported: flag if Command Class is supported or only controlled
« commandclass data: Command Class specific data - see chapter D] for details.
- name: Command Class name
- Method: Command Class method - see chapter|D|for details.

166

D Command Class Reference

Command Classes are groups of wireless commands that allow using certain functions of a Z-Wave device. In Z-
Way™" each Z-Wave device has a data holder entry for each Command Class supported. During the inclusion and
interview of the device the Command Class structure is instantiated in the data holder and filled with certain data.
Command Class commands change values of the corresponding data holder structure. The follow list shows the public
commands of the Command Classes supported with their parameters and the data holder objects changed.

In Z-WAVE EXPERT USER INTERFACE navigate to Configuration > Expert Commands to execute commands
of the supported Command Classes and visualizes all data holder elements in as tree in a simplified user interface.

167

D Command Class Reference

D.1 Command Class Basic (0x20/32)
Version 1, Supported and Controlled

The Basic Command Class is the wildcard command class. Almost all Z-Wave devices support this command class
but they interpret it’s commands in different ways. A thermostat will handle a Basic Set Command in a different way
than a Dimmer but both accept the Basic Set command and act. Used for generic interoperability between devices.
You should always use more specific Command Classes where possible.

Data holders:
« level: Generic switching level of the device controlled

Command Basic Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Basic Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

Command Basic Set
Syntax: Set(value, successCallback = NULL, failureCallback = NULL)

Description: Send Basic Set
Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

D.2 Command Class Wakeup (0x84/132)
Version 2, Controlled

Allows to manage periodical wakeup of sleeping battery operated device. Upon wakeup device will notify one node
listed in nodeld. NB! If the device can wake up by interrupt (user interaction, button press, sensor trigger), it might
happen that the device never wakes up. This can happen if you wake up the device by interrupe each time before
internal chip wakeup period (usually from 1 to 4 minutes) reaches. (Z-Wave chip can not count for remaining time to
next wakeup, so will restart timer again). This means that strictly speaking you can not rely on long time no wake
up as an indicator of lost/damaged device or battery empty. NB! To save battery it is recommended to tune wakeup
period to one week or even more for devices that do only need to report battery on wakeup (remote controls). For
sensors it is recommended to have at least one hour wakeup period.

Data holders:
« interval: Wakeup interval in seconds
+ nodeld: Node to notify about wakeup
« min: Minimal possible wakeup interval
« max: Maximal possible wakeup interval
+ default: Factory default wakeup interval
« step: Step for wakeup interval (values are rounded to next or previous step)
+ lastWakeup: Last time the device has sent us wake notification (Unix timestamp)
« lastSleep: Last time the device was sent into sleep mode (Unix timestamp)

Command Wakeup Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

168

D Command Class Reference

Description: Send Wakeup Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: interval and nodeld updated

Command Wakeup CapabilitiesGet
Syntax: CapabilitiesGet(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup CapabilityGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: min, max, default, step updated

Command Wakeup Sleep
Syntax: Sleep(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup NoMorelnformation (Sleep)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: lastSleep updated

Command Wakeup Set
Syntax: Set(interval, notificationNodeld, successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup Set
Parameter interval: Wakeup interval in seconds
Parameter notificationNodeld: Node Id to be notified about wakeup

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: interval and nodeld updated

D.3 Command Class NoOperation (0x00/0)

Used to check if device is reachable by sending empty packet.

D.4 Command Class Battery (0x80/128)
Version 1, Controlled

Allows monitoring the battery charging level of a device.

Data holders:
« last: Last battery level reported (0..100%)
« lastChange: Time (UNIX timestamp) when the battery was replaced last time (time of the moment when the
value reported was way bigger than previous one)
« history: Subtree with history
. [% value]: Time when battery level reached this % value (0, 10, 20,... 100)

169

D Command Class Reference

Command Battery Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Battery Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: last updated. lastChange updated if battery level is way higher than it was before, history updated
if reached next 10% step

D.5 Command Class ManufacturerSpecific (0x72/114)

Version 2, Supported and Controlled

Reports vendor information, product type and ID and device serial number.

Data holders:

vendorld: Vendor ID assigned by Sigma Designs
vendor: Vendor name

productld: Product ID

productType: Product Type ID

serialNumber: Product Serial Number

Command ManufacturerSpecific Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send ManufacturerSpecific Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command ManufacturerSpecific DeviceldGet

Syntax: DeviceldGet(type, successCallback = NULL, failureCallback = NULL)
Description: Send ManufacturerSpecific Device Id Get
Parameter type: Device Id type to request

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.6 Command Class Proprietary (0x88/136)

Version 1, Controlled

Allows to transfer manufacturer proprietary data. Data format is manufacturer specific.

Data holders:

bytes: Binary bytes array of raw data

Command Proprietary Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send Proprietary Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

170

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Proprietary Set
Syntax: Set(data, successCallback = NULL, failureCallback = NULL)

Description: Send Proprietary Set
Parameter data: Data to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.7 Command Class Configuration (0x70/112)
Version 1, Controlled

Used to set certian configuration valeus that change the behavior of the device. Z-Wave requires that every device
works out of the box without further configuration. However different configuration value significantly enhance the
value a device. Z-Wave does not provide any information about the configuration values by wireless commands. User
have to look into the device manual to learn about configuration parameters. The Device Description Record (ZDDX),
incoprotated by Z-Way gives information about valid parameters and the meaning of the values to be set.

Data holders:

« [paramld]: Configuration parameter subtree.
. val: Value assigned
. size: Size of that parameter (1, 2 or 4 bytes)

Command Configuration Get
Syntax: Get(parameter, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration Get
Parameter parameter: Parameter number (from 1 to 255)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: parameter subtree updated or created if absent

Command Configuration Set
Syntax: Set(parameter, value, size = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration Set
Parameter parameter: Parameter number (from 1 to 255)
Parameter value: Value to be sent (negative and positive values are accepted, but will be stripped to size)

Parameter size: Size of the value (1, 2 or 4 bytes). Use 0 to guess from previously reported value if any. 0
means use size previously obtained Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: parameter subtree updated or created if absent
Command Configuration SetDefault

Syntax: SetDefault(parameter, successCallback = NULL, failureCallback = NULL)
Description: Send Configuration SetDefault

171

D Command Class Reference

Parameter parameter: Parameter number to be set to device default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: parameter subtree updated or created if absent

D.8 Command Class SensorBinary (0x30/48)

Version 2, Controlled
Allows receive binary sensor states.

Data holders:
« typemask: Internal. Bit mask of the supported types
+ [sensorType]: Subtree for sensor type Id
. sensorTypeString: Description of sensor type
. level: Triggered/idle status

Command SensorBinary Get
Syntax: Get(sensorType = -1, successCallback = NULL, failureCallback = NULL)

Description: Send SensorBinary Get

Parameter sensorType: Type of sensor to query information for. 0xFF to query information for the first
available sensor type. -1 to query information for all supported sensor types

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: sensorType subtree updated

D.9 Command Class Association (0x85/133)

Version 2, Supported and Controlled

Allows to manage the association groups: adding and removing nodelDs in the association groups.
Data holders:

« groups: Number of association groups in the device
« [groupld]: Group subtree, where groupld = 1..groups

. max: Number of nodes the group can hold
. nodes: Array with nodes in the group
. nodesToFollow: Internal

« specificGroup: Number of specific association groups in the device

Command Association Get
Syntax: Get(groupld = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Association Get
Parameter groupld: Group Id (from 1 to 255). 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

172

D Command Class Reference
Command Association Set
Syntax: Set(groupld, includeNode, successCallback = NULL, failureCallback = NULL)
Description: Send Association Set (Add)
Parameter groupld: Group Id (from 1 to 255)
Parameter includeNode: Node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

Command Association Remove
Syntax: Remove(groupld, excludeNode, successCallback = NULL, failureCallback = NULL)

Description: Send Association Remove
Parameter groupld: Group Id (from 1 to 255)
Parameter excludeNode: Node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

Command Association GroupingsGet
Syntax: GroupingsGet(successCallback = NULL, failureCallback = NULL)

Description: Send Association GroupingsGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Update number of supported groups and interview all groups

D.10 Command Class Meter (0x32/50)
Version 4, Controlled

Allows to read different kind of meters. Z-Wave differentiates different meter types and different meter scales. Please
refer to the file translations/Scales.xml for details about possible meter types and values.

Data holders:
« scalemask: Internal. Bit mask with supported scales
« resettable: Flag to indicate of the meter can be resetted
« [scaleld]: Meter scale subtree

. scale: Meter scale id

. scaleString: Meter scale name

. sensorType: Sensor type id

. sensorTypeString: Sensor type name

. val: Meter value

. ratetype: Rate type

. delta: Delta from the last value requested
. previous: Previous value requested

Command Meter Get
Syntax: Get(scale = -1, successCallback = NULL, failureCallback = NULL)

Description: Send Meter Get

173

D Command Class Reference

Parameter scale: Desired scale. -1 for all scales

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: scale subtree updated

Command Meter Reset
Syntax: Reset(successCallback = NULL, failureCallback = NULL)

Description: Send Meter Reset

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: scale subtree updated

Command Meter Supported
Syntax: Supported(successCallback = NULL, failureCallback = NULL)

Description: Send Meter SupportedGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.11 Command Class Meter Pulse (0x35/53)

Version 1, Controlled
Allows to gather information from pulse meters.

Data holders:
« val: Meter pulse value

Command MeterPulse Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send MeterPulse Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.12 Command Class SensorMultilevel (0x31/49)
Version 9, Controlled

Allows to read different kind of sensor. Z-Wave differentiates different sensor types and different scales of this sensor.
Please refer to the file /translations/scales.xml for details about possible sensor types and values.

Data holders:
« typemask: Internal. Bit mask of the supported types
« [sensorTypeld]: Subtree for sensor type Id

. sensorTypeString: Description of sensor type
. scale: Scale Id
. scaleString: Scale description

174

D Command Class Reference

. val: Value

. size: Internal. Size of the value (1, 2 or 4 bytes)

. precision: Internal. Precision used in value (number of digits after decimal dot)

. deviceScale: Internal. Scale Id on the device’s side (if local conversion is used, like C->F)

Command SensorMultilevel Get
Syntax: Get(sensorType = -1, successCallback = NULL, failureCallback = NULL)
Description: Send SensorMultilevel Get
Parameter sensorType: Type of sensor to be requested. -1 means all sensor types supported by the device

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: sensorTypeld subtree updated

D.13 Command Class Sensor Configuration (0x9E/158)

Version 1, Controlled

Allows to configure senors specific configuration like trigger level. Works in conjunction with SensorMultilevel Com-
mand Class. In modern devices replaced by Configuration Command Class.

Data holders:
« sensorType: Sensor type Id
« sensorTypeString: Sensor type descirption
« val: Trigger value
. scale: Scale of trigger value
« scaleString: Scale description
« size: Internal. Size of the value (1, 2 or 4 bytes)
- precision: Internal. Precision used in value (number of digits after decimal dot)

Command SensorConfiguration Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SensorConfiguration Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: all dataholders are updated

Command SensorConfiguration Set
Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)
Description: Send SensorConfiguration Set
Parameter mode: Value set mode
Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: all dataholders are updated

D.14 Command Class SwitchAll (0x27/39)

Version 1, Supported and Controlled

175

D Command Class Reference

Controls the behavior of a actuator on Switch All commands. Also allows to send Switch All commands.

Data holders:

« mode: Which type of SwitchAll On/Off commands to react on: 0 for none, 1 to reacto on Off only, 2 to react on

On only, 255 to react on both

« onOff: Allows to trigger SwitchAll On/Off commands from other devices. Set to False on Off command received

and True on On command.

Command SwitchAll Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode updated

Command SwitchAll Set
Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set
Parameter mode: SwitchAll Mode: see definitions below

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode updated

Command SwitchAll SetOn
Syntax: SetOn(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set On

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command SwitchAll SetOff
Syntax: SetOff(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set Off

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.15 Command Class SwitchBinary (0x25/37)

Version 1, Supported and Controlled

Allows to control On/Off switches, actuators, electrical power switches and trap On/Off control commands from other

devices.

Data holders:
« level: State: False for Off, True for On

176

D Command Class Reference

Command SwitchBinary Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send SwitchBinary Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

Command SwitchBinary Set

Syntax: Set(value, successCallback = NULL, failureCallback = NULL)
Description: Send SwitchBinary Set
Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

D.16 Command Class SwitchMultilevel (0x26/38)

Version 1, Supported and Controlled

Allows to control all actuators with multilevel switching functions, primarily Dimmers and Motor Controlling devices
as well as trap dim events sent by remotes.

Data holders:

level: State 0...99 = 0...100%, 255 for On on last value (or on maximum - device specific)

startChange: Dimming up or down. Updated on dimming start. Allows to trap events from remotes to con-
troller.

stopChange: Updated on dimming end. Allows to trap events from remotes to controller.

prevLevel: Internal

primary: Unused

secondary: Unsued

Command SwitchMultilevel Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send SwitchMultilevel Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

Command SwitchMultilevel Set

Syntax: Set(level, duration = 0xff, successCallback = NULL, failureCallback = NULL)
Description: Send SwitchMultilevel Set
Parameter level: Level to be set

Parameter duration: Duration of change:. 0 instantly. 0x01..0x7f in seconds. 0x80...0xfe in minutes
mapped to 1...127 (value 0x80=128 is 1 minute). 0xff use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

177

D Command Class Reference

Command SwitchMultilevel StartLevelChange

Syntax: StartLevelChange(dir, duration = 0xff, ignoreStartLevel = TRUE, startLevel = 50, incdec = 0, step
= 0xff, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel StartLevelChange
Parameter dir: Direction of change: 0 to incrase, 1 to decrase

Parameter duration: Duration of change:. 0 instantly. 0x01..0x7f in seconds. 0x80...0xfe in minutes
mapped to 1...127 (value 0x80=128 is 1 minute). 0xff use device factory default

Parameter ignoreStartLevel: If set to True, device will ignore start level value and will use it’s curent value
Parameter startLevel: Start level to change from

Parameter incdec: Increment/decrement type for step:. 0 Increment. 1 Decrement. 2 Reserved. 3 No
Inc/Dec

Parameter step: Step to be used in level change in percentage. 0...99 mapped to 1...100%. 0xff uses device
factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

Command SwitchMultilevel StopLevelChange

Syntax: StopLevelChange(successCallback = NULL, failureCallback = NULL)
Description: Send SwitchMultilevel StopLevelChange

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level updated

D.17 Command Class MultiChannelAssociation (0x8E/142)

Version 3, Supported and Controlled

This is an extention to the Association Command Class. It follows the same logic as the Association Command Class

and has the same commands but accepts different instance values.

Data holders:

groups: Number of association groups in the device (can be smaller than the number of groups in Association)

[groupld]: Group subtree, where groupld = 1..groups
max: Number of nodes/instances the group can hold

nodeslnstances: Array with nodes/instances in the group. Each pair is represented by two elements (node,

instance).
nodeslnstancesToFollow: Internal

Command MultiChannelAssociation Get

Syntax: Get(groupld = 0, successCallback = NULL, failureCallback = NULL)
Description: Send MultiChannelAssociation Get
Parameter groupld: Group Id (from 1 to 255). 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

178

D Command Class Reference
Command MultiChannelAssociation Set
Syntax: Set(groupld, includeNode, includelnstance, successCallback = NULL, failureCallback = NULL)
Description: Send MultiChannelAssociation Set (Add)
Parameter groupld: Group Id (from 1 to 255)
Parameter includeNode: Node to be added to the group
Parameter includelnstance: Instance of the node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

Command MultiChannelAssociation Remove
Syntax: Remove(groupld, excludeNode, excludelnstance, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation Remove

Parameter groupld: Group Id (from 1 to 255)

Parameter excludeNode: Node to be removed from the group

Parameter excludelnstance: Instance of the node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Subtree corresponding to the group updated

Command MultiChannelAssociation GroupingsGet
Syntax: GroupingsGet(successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation GroupingsGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.18 Command Class MultiChannel (0x60/96)
Version 4, Supported and Controlled

Allows to communicate with internal parts of device called channels or instances. Implemented transparently by the
library.

Data holders:
« endPoints: Number of endpoints

. [endPointld]: Endpoint ID
- aggregated: Number of aggregated endpoints
. [endPointld]: Aggregated endpoint ID (numbering starts from endPoints + 1)

« dynamic: Flag describing if endpoins are dynamic (their number and type can change over time)
« identical: Internal. Flag describing if endpoins are identical

« mylnstance: Internal

+ donelds: Internal

Command MultiChannel Get
Syntax: Get(ccld, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Get (Multilnstance V1 command). Reports number of channels support-
ing a defined Command Class. Depricated by MutliChannel V2, needed for old devices only

179

D Command Class Reference

Parameter ccld: Command Class Id in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MultiChannel EndpointFind
Syntax: EndpointFind(generic, specific, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Endpoint Find. Note that MultiChannel EndpointFind Report is not
supported as useless. But one can still trap the response packet in logs

Parameter generic: Generic type in search
Parameter specific: Specific type in search

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MultiChannel EndpointGet
Syntax: EndpointGet(successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Endpoint Get. Get the number of available endpoints

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MultiChannel CapabilitiesGet
Syntax: CapabilitiesGet(endpoint, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Capabilities Get. Request information about the specified endpoint
Parameter endpoint: Endpoint in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MultiChannel AggregatedMembersGet
Syntax: AggregatedMembersGet(endpoint, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannel Aggregated Members Get. Request information about endpoints in the
specified aggregated endpoint (v4 and above)

Parameter endpoint: Aggregated endpoint in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.19 Command Class Node Naming (0x77/119)

Version 1, Controlled

Allows assigning a readable string for a name and a location to a physical device. The two strings are stored inside
the device and can be obtained upon request. There are no restrictions to the name except the maximum length up
to 16 characters.

Data holders:

180

D Command Class Reference

« nodename: Node name

+ nameEncoding: NodeNmae encoding
« location: Location

« locationEncoding: Location encoding

Command NodeNaming Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName and GetLocation

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: nodename, nameEncoding, location and locationEncoding updated

Command NodeNaming GetName
Syntax: GetName(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: nodename and nameEncoding updated

Command NodeNaming GetLocation
Syntax: GetLocation(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetLocation

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: location and locationEncoding updated

Command NodeNaming SetName
Syntax: SetName(name, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetName
Parameter name: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: nodename and nameEncoding updated

Command NodeNaming SetLocation
Syntax: SetLocation(location, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetLocation
Parameter location: Value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: location and locationEncoding updated

181

D Command Class Reference

D.20 Command Class Thermostat SetPoint (0x43/67)
Version 3, Controlled

Allows to set a certain setpoint to a thermostat (set temperature to maintain). The command class can be applied to
different kind of thermostats (heating, cooling, ...), hence it has various modes.

Data holders:
+ [modeld]: Subtree for mode

. modeName: Mode description

. scale: Scale Id

. scaleString: Scale description

. val: Temperature to maintain

. setVal: Last set temperature to maintain (might differ from val until thermostat wakeup)
. min: Minimal temperature value supported by the device

. max: Maximal temperature value supported by the device

. size: Internal. Size of the value (1, 2 or 4 bytes)

. precision: Internal. Precision used in value (number of digits after decimal dot)

. deviceScale: Internal. Scale I1d on the device side (if local conversion is used, like C->F)
. deviceScaleString: Internal. Scale description of the device

« modemask: Internal. Bit mask with supported modes
+ danfossBugFlag: Internal

Command ThermostatSetPoint Get
Syntax: Get(mode = -1, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Get
Parameter mode: Thermostat Mode. -1 requests for all modes

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: modeld subtree updated

Command ThermostatSetPoint Set
Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Set
Parameter mode: Thermostat Mode
Parameter value: temperature

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: modeld subtree updated

D.21 Command Class Thermostat Mode (0x40/64)

Version 3, Controlled
Allows to switch a heating/cooling actuator in different modes.

Data holders:
« modemask: Internal. Bit mask with supported modes
« mode: Current mode
« [modeld]: Mode subtree
. modeName: Mode description

182

D Command Class Reference

Command ThermostatMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatMode Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command ThermostatMode Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatMode Set
Parameter mode: Thermostat Mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.22 Command Class Thermostat Fan Mode (0x44/68)

Version 4, Controlled

Allows to controls fan modes in thermostats.

Data holders:

modemask: Internal. Bit mask with supported modes
mode: Current mode
[modeld]: Mode subtree
modeName: Mode description
on: Reports if fan is currently On (True) or Off (False)

Command ThermostatFanMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatFanMode Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode and on updated

Command ThermostatFanMode Set

Syntax: Set(on, mode, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanMode Set

Parameter on: TRUE to turn fan on (and set mode), FALSE to comletely turn off (mode is ignored)
Parameter mode: Thermostat Fan Mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode and on updated

D.23 Command Class Thermostat Fan State (0x45/69)

Version 2, Controlled

183

D Command Class Reference

Allows to determine the operating state of the fan. V2 is not yet implemented.

Data holders:

state: Fan current state (0 Off, 1 Running)

Command ThermostatFanState Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatFanState Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: state and on updated

D.24 Command Class Thermostat Operating State (0x42/66)

Version 2, Controlled

Allows to determine the operating state of the thermostat and state change history.

Data holders:

state: Current operation state

statemask: Internal. Bit mask of supported logs for each state

[stateld]: Subtree with state log info
today: Number of minutes thermostat was in this state today (since 0:00)
yesterday: Number of minutes thermostat was in this state yesterday (since 0:00)

Command ThermostatOperatingState Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatOperatingState Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: state updated

Command ThermostatOperatingState LoggingGet

Syntax: LoggingGet(state, successCallback = NULL, failureCallback = NULL)
Description: Send ThermostatOperatingState Logging Get
Parameter state: State number to get logging for. 0 to get log for all supported states

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: stateld subtree updated updated

D.25 Command Class Alarm Sensor (0x9C/156)

Version 1, Controlled

Deprecated Command Class. Now Alarm/Notification is used instead.

Data holders:

alarmMap: Internal. Bit mask of supported alarm types

184

D Command Class Reference

« alarms: Unused
« [alarmTypeld]: Alarm type subtree

. srcld: Source of event

. sensorState: Alarm state

. sensorTime: Alarm time (according to the sender)
. typeString: Name of alarm type

Command AlarmSensor SupportedGet
Syntax: SupportedGet(successCallback = NULL, failureCallback = NULL)

Description: Send AlarmSensor SupportedGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: List of supported types updated

Command AlarmSensor Get
Syntax: Get(type = -1, successCallback = NULL, failureCallback = NULL)

Description: Send AlarmSensor Get. Requests the status of the alarm sensor of a given type

Parameter type: Alarm type to get. -1 means get all types

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Alarm type subtree updated

D.26 Command Class Door Lock (0x62/98)
Version 2, Controlled

Allows to operate an electronic door lock. This Command Class is ALWAYS encapsulated in Security. Door lock modes
are the following:.

- 0x00 Door Unsecured (Open).

- 0x01 Door Unsecured with timeout.

- 0x10 Door Unsecured for inside Door Handles.

- 0x11 Door Unsecured for inside Door Handles with timeout.

- 0x20 Door Unsecured for outside Door Handles.

- 0x21 Door Unsecured for outside Door Handles with timeout.

- OxFE Door/Lock Mode Unknown (bolt not fully retracted/engaged).

- 0xFF Door Secured (closed).

Data holders:
« mode: Operating mode of the lock
« insideMode: Bit mask describing if a specific handles (1..4) can open the door from inside
- outsideMode: Bit mask describing if a specific handles (1..4) can open the door from outside
« lockMinutes: Time remaind before autolock (minutes, 0OxFE for no autolock)
« lockSeconds: Time remaind before autolock (seconds, OxFE for no autolock)
« condition: Bit mask describing lock components: bit 0: Door Open(0)/Close(1), bit 1: Bolt Locked(0)/Unlocked(1),
bit 2: Latch Open(0)/Close(1)
- insideState: Bit mask describing if a specific handles (1..4) can open the door from inside
- outsideState: Bit mask describing if a specific handles (1..4) can open the door from outside
« timeoutMinutes: Timeout for autolock (minutes, 0xFE for no autolock)
« timeoutSeconds: Timeout for autolock (seconds, 0xFE for no autolock)
« opType: 0x01 for constant operation, 0x02 for autolock

185

D Command Class Reference
Command DoorlLock Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send DoorLock Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode, insideMode, outsideMode, lockMinutes, lockSeconds and condition updated

Command DoorLock ConfigurationGet
Syntax: ConfigurationGet(successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Configuration Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: insideState, outsideState, timeoutMinutes, timeoutSeconds, opType updated

Command DoorLock Set
Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Set
Parameter mode: Lock mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: mode, insideMode, outsideMode, lockMinutes, lockSeconds and condition updated

Command DoorLock ConfigurationSet

Syntax: ConfigurationSet(opType, outsideState, insideState, lockMin, lockSec, successCallback = NULL,
failureCallback = NULL)

Description: Send DoorLock Configuration Set

Parameter opType: Operation type

Parameter outsideState: State of outside door handle
Parameter insideState: State of inside door handle

Parameter lockMin: Lock after a specified time (minutes part)
Parameter lockSec: Lock after a specified time (seconds part)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: insideState, outsideState, timeoutMinutes, timeoutSeconds, opType updated

D.27 Command Class Door Lock Logging (0x4C/76)

Version 1, Controlled

Allows to receive reports about all successful and failed activities of the electronic door lock. Event types are the
following:.

- 1 Lock Command: Keypad access code verified lock command.

- 2 Unlock Command: Keypad access code verified unlock command.

- 3 Lock Command: Keypad lock button pressed.

186

D Command Class Reference

- 4 Unlock command: Keypad unlock button pressed.

-5 Lock Command: Keypad access code out of schedule.
- 6 Unlock Command: Keypad access code out of schedule.
- 7 Keypad illegal access code entered.

- 8 Key or latch operation locked (manual).

-9 Key or latch operation unlocked (manual).

- 10 Auto lock operation.

- 11 Auto unlock operation.

- 12 Lock Command: Z-Wave access code verified.

- 13 Unlock Command: Z-Wave access code verified.

- 14 Lock Command: Z-Wave (nho code).

- 15 Unlock Command: Z-Wave (no code).

- 16 Lock Command: Z-Wave access code out of schedule.
- 17 Unlock Command Z-Wave access code out of schedule.
- 18 Z-Wave illegal access code entered.

- 19 Key or latch operation locked (manual).

- 20 Key or latch operation unlocked (manual).

- 21 Lock secured.

- 22 Lock unsecured.

- 23 User code added.

- 24 User code deleted.

- 25 All user codes deleted.

- 26 Master code changed.

- 27 User code changed.

- 28 Lock reset.

- 29 Configuration changed.

- 30 Low battery.

- 31 New Battery installed.

Data holders:
- maxRecords: Maximum number of records the lock can store. Olded records are reused first.
« [recordld]: Subtree storing log record

. time: Time of the event

. event: Event type

. uld: UserID (from UserCode Command Class)
. eventString: Event type description

Command DoorLockLogging Get
Syntax: Get(record = 0, successCallback = NULL, failureCallback = NULL)

Description: Send DoorLockLogging Get
Parameter record: Record number to get, or 0 to get last records

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: record subtree updated

D.28 Command Class User Code (0x63/99)

Version 1, Controlled
Allows to define individual user entry code in electrnic door lock.

Data holders:
« maxUsers: Maximum number of supported users

187

D Command Class Reference

[userld]: User subtree

code: User code

status: Status of the user: 0 for available (no code set), 1 for occupied (code set), 2 for reserved by admin-
istrator

hasCode: Flag if a valid code is set (in case device reports occupied, but code is not valid (less than 4
symbols) or code not set but old is still reported by the device)

Command UserCode Get

Syntax: Get(user = -1, successCallback = NULL, failureCallback = NULL)
Description: Send UserCode Get
Parameter user: User index to get code for (1...maxUsers). -1 to get codes for all users

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld subtree updated

Command UserCode Set

Syntax: Set(user, code, status, successCallback = NULL, failureCallback = NULL)
Description: Send UserCode Set

Parameter user: User index to set code for (1...maxUsers). 0 means set for all users
Parameter code: Code to set (4...10 characters long)

Parameter status: Code status to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld subtree updated

Command UserCode SetRaw

Syntax: SetRaw(user, code, status, successCallback = NULL, failureCallback = NULL)
Description: Send UserCode Set (raw)

Parameter user: User index to set code for (1...maxUsers). 0 means set for all users
Parameter code: Code to set (4...10 bytes long)

Parameter status: Code status to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld subtree updated

D.29 Command Class Time (0x8A/138)

Version 2, Supported and Controlled

Allows to report to devices in Z-Wave network time and date as well as time zone offset and daylight savings param-
eters. The data formats are based on the International Standard ISO 8601.

Command Time TimeGet

Syntax: TimeGet(successCallback = NULL, failureCallback = NULL)
Description: Send Time TimeGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

188

D Command Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Time DateGet
Syntax: DateGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time DateGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Time OffsetGet
Syntax: OffsetGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time TimeOffsetGet

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.30 Command Class Time Parameters (0x8B/139)

Version 1, Controlled

Used to set date and time. Time zone offset and daylight savings may be set in the Time Command Class. The data
formats are based on the International Standard ISO 8601.

Command TimeParameters Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command TimeParameters Set
Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.31 Command Class Clock (0x81/129)

Version 1, Supported and Controlled

Sync clock on the device with controller system clock.

Command Clock Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

189

D Command Class Reference
Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: reported value ignored

Command Clock Set
Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.32 Command Class Scene Activation (0x2B/43)
Version 1, Supported and Controlled
Allows to activate scenes on devices and trap scene activation events from remotes.

Data holders:
. currentScene: Scene activated from remote
« dimmingDuration: Dimming duration for the activated scene

Command SceneActivation Set
Syntax: Set(sceneld, dimmingDuration = 0xff, successCallback = NULL, failureCallback = NULL)

Description: Send SceneActivation Set
Parameter sceneld: Scene Id
Parameter dimmingDuration: Dimming duration

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.33 Command Class Scene Controller Conf (0x2D/45)
Version 1, Controlled

Allows to set scene Id to be activated using SceneActivation Command Class on a remote.

Data holders:
« [groupld]: Subtree for a given association group number (defined by Association Command Class)
. scene: Scene to activate for all devices in the group
. duration: Duration for scene activation

Command SceneControllerConf Get
Syntax: Get(group = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneControllerConf Get
Parameter group: Group Id. 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: group subtree updated

190

D Command Class Reference
Command SceneControllerConf Set
Syntax: Set(group, scene, duration = 0x0, successCallback = NULL, failureCallback = NULL)
Description: Send SceneControllerConf Set
Parameter group: Group Id
Parameter scene: Scene Id
Parameter duration: Duration

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: group subtree updated

D.34 Command Class Scene Actuator Conf (0x2C/44)
Version 1, Controlled

Allows to configure actuators to set specified level on a given scene activation by SceneActivation Command Class.

Data holders:
+ [sceneld]: Subtree for scene
. level: Level to set on scene activation
. dimming: Default dimming duration to use
« currentScene: Currently activated scene

Command SceneActuatorConf Get
Syntax: Get(scene = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneActuatorConf Get
Parameter scene: Scene Id. 0 means get current scene

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: scene subtree updated, currentScene updated (if scene = 0)

Command SceneActuatorConf Set
Syntax: Set(scene, level, dimming = 0xff, override = TRUE, successCallback = NULL, failureCallback =
NULL)

Description: Send SceneActuatorConf Set
Parameter scene: Scene Id

Parameter level: Level

Parameter dimming: Dimming

Parameter override: If false then the current settings in the device is associated with the Scene Id. If true
then the Level value is used

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: scene subtree updated

D.35 Command Class Indicator (0x87/135)

Version 1, Controlled

191

D Command Class Reference

Operates the indicator on the device if available. Can be used to identify a device or use the indicator for special
purposes (show away/at home mode).

Data holders:
- stat: Status of the indicator

Command Indicator Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Indicator Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: stat updated

Command Indicator Set
Syntax: Set(val, successCallback = NULL, failureCallback = NULL)

Description: Send Indicator Set
Parameter val: Value to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: stat updated

D.36 Command Class Protection (0x75/117)
Version 2, Controlled

Allows to disable local and RF control of the device.

Data holders:
. state: Local control state (0 = Unprotected, 1 = Protected by sequence, 2 = Protected)
- rfState: Control via RF state (0 = Unprotected, 1= No RF control, 2 = No RF response at all)
« exclusive: Flag describing if exclusive control via RF is supported
« timeout: Flag describing if timeout of protection of control via RF is supported
« stateCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support
« rfStateCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support
« exclusiveCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support
« timeoutCap: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

Command Protection Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: state, rfState updated

Command Protection Set
Syntax: Set(state, rfState = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Set

Parameter state: Local control protection state

192

D Command Class Reference

Parameter rfState: RF control protection state

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: state and rfState updated

Command Protection ExclusiveGet
Syntax: ExclusiveGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Exclusive Control Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Protection ExclusiveSet
Syntax: ExclusiveSet(controlNodeld, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Exclusive Control Set
Parameter controlNodeld: Node Id to have exclusive control over destination node

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Protection TimeoutGet
Syntax: TimeoutGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command Protection TimeoutSet
Syntax: TimeoutSet(timeout, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Set

Parameter timeout: Timeout in seconds. 0 is no timer set. -1 is infinite timeout. max value is 191 minute
(11460 seconds). values above 1 minute are rounded to 1 minute boundary

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.37 Command Class Schedule Entry Lock (0x4E/78)
Version 3, Controlled

Allows to define individual time intervals for access to a door lock per user. Refers to users defined by User Code
Command Class.

Data holders:
- weekDaySlots: Number of weekday slots supported
« yearSlots: Number of date slots supported
o [userld]: Subtree for userld
. Weekday: Subtree for weekday schedule

193

D Command Class Reference

. [slotld]: Subtree slotld

. dayOfWeek: Day of week
. startHour: Start hour

. startMinute: Start minute
. stopHour: Stop hour

. stopMinute: Stop minute
. Year: Subtree for date schedule

. [slotld]: Subtree slotld

. startYear: Start year

. startMonth: Start month
. startDay: Start day

. startHour: Start hour

. startMinute: Start minute
. stopYear: Stop year

. stopMonth: Stop month

. stopDay: Stop day

. stopHour: Stop hour

. stopMinute: Stop minute

Command ScheduleEntryLock Enable
Syntax: Enable(user, enable, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Enable(All)
Parameter user: User to enable/disable schedule for. 0 to enable/disable for all users
Parameter enable: TRUE to enable schedule, FALSE otherwise

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command ScheduleEntryLock WeekdayGet
Syntax: WeekdayGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Get
Parameter user: User to get schedule for. 0 to get for all users
Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld->Weekday->slotld subtree updated

Command ScheduleEntryLock WeekdaySet

Syntax: WeekdaySet(user, slot, dayOfWeek, startHour, startMinute, stopHour, stopMinute, successCall-
back = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter dayOf Week: Weekday number (0..6). 0 = Sunday. . 6 = Saturday
Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

194

D Command Class Reference

Report: userld->Weekday->slotld subtree updated

Command ScheduleEntryLock YearGet
Syntax: YearGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Year Get
Parameter user: User to enable/disable schedule for. 0 to get for all users
Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld->Year->slotld subtree updated

Command ScheduleEntryLock YearSet

Syntax: YearSet(user, slot, startYear, startMonth, startDay, startHour, startMinute, stopYear, stopMonth,
stopDay, stopHour, stopMinute, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Year Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter startYear: Year in current century when schedule starts (0..99)
Parameter startMonth: Month when schedule starts (1..12)

Parameter startDay: Day when schedule starts (1..31)

Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopYear: Year in current century when schedule stops (0..99)
Parameter stopMonth: Month when schedule stops (1..12)

Parameter stopDay: Day when schedule stops (1..31)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: userld->Year->slotld subtree updated

D.38 Command Class Climate Control Schedule (0x46/70)

Version 1, Supported and Controlled
Obsolete but still partly implemented for legacy support.

Data holders:
+ overrideType: Type of current override
. overrideState: State of override

Command ClimateControlSchedule OverrideGet
Syntax: OverrideGet(successCallback = NULL, failureCallback = NULL)

Description: Send ClimateControlSchedule Override Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

195

D Command Class Reference

Command ClimateControlSchedule OverrideSet
Syntax: OverrideSet(overrideType, overrideState, successCallback = NULL, failureCallback = NULL)

Description: Send ClimateControlSchedule Override Set

Parameter overrideType: Override type to set. (0 — no override, 1 — temporary override, 2 — permanent
override)

Parameter overrideState: Override state. -128 (0x80) ... -1 (0xFF): setpoint -12.8 ... -0.1 degrees. 0 (0x00):
setpoint. 1 (0x01) ... 120 (0x78): setpoint +0.1 ... +12 degrees. 121 (0x79): frost protection. 122 (0x7A):
energy saving. 123 (0x7B) ... 126 (0x7D): reserved. 127 (0x7F): unused

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.39 Command Class MeterTableMonitor (0x3D/61)
Version 2, Controlled

Allows to read historical and accumulated values in physical units from a water meter or other metering device (gas,
electric etc.) and thereby enabling automatic meter reading capabilities.

Data holders:
« adminld: Meter administrator ID
« Id: Customer ID
- rateType: Type of rate (export or import)
« payMeter: Specifies the way the account is done
« meterType: Meter type
« meterTypeString: Meter description
« dataSetMask: Internal. Bit mask with type of data set supported
« dataSetHistoryMask: Internal. Bit mask with type of data set history supported
« maxHistory: Max number of records the device can store
. statusMask: Internal. Bit mask with type of events supported
« maxEvents: Max number of events the device can store
+ [dataSetld]: Subtree for data set

. val: Meter value for this data set

. time: Time corresponding to the value

. scale: Scale ID

. scaleString: Scale desctiption

. history: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

« status: Subtree with statuses

. [statuseld]: Subtree with specific status ID

. statusString: Status descirption

. active: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support
. time: Requires Z-Wave specification re-read. Please contact Z-Wave.Me support

Command MeterTableMonitor StatusDateGet
Syntax: StatusDateGet(maxResults = 0, startDate, endDate, successCallback = NULL, failureCallback =
NULL)

Description: Send StatusTableMonitor Status Get for a range of dates

Parameter maxResults: Maximum number of entries to get from log. 0 means all matching entries
Parameter startDate: Start date and time (local UNIX time)

Parameter endDate: End date and time (local UNIX time)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

196

D Command Class Reference

Command MeterTableMonitor StatusDepthGet
Syntax: StatusDepthGet(maxResults = 0, successCallback = NULL, failureCallback = NULL)
Description: Send StatusTableMonitor Status Get for specified depth
Parameter maxResults: Number of entries to get from log. 0 means current status only. 0xFF means all
entries
Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MeterTableMonitor CurrentDataGet
Syntax: CurrentDataGet(setld = 0, successCallback = NULL, failureCallback = NULL)

Description: Send StatusTableMonitor Current Data Get

Parameter setld: Index of dataset to get data for. 0 to get data for all supported datasets

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command MeterTableMonitor HistoricalDataGet
Syntax: HistoricalDataGet(setld = 0, maxResults = 0, startDate, endDate, successCallback = NULL, fail-
ureCallback = NULL)
Description: Send StatusTableMonitor Historical Data Get
Parameter setld: Index of dataset to get data for. 0 to get data for all supported datasets
Parameter maxResults: Maximum number of entries to get from log. 0 means all matching entries
Parameter startDate: Start date and time (local UNIX time)
Parameter endDate: End date and time (local UNIX time)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.40 Command Class Alarm (0x71/113)
Version 5, Controlled

Also known as Notification Command Class. Used to report alarm events from binary sensors. Starting from version
3 all types are strictly defines:.
- 0x01 Smoke.

- 0x02 CO.

- 0x03 CO2.

- 0x04 Heat.

- 0x05 Water.

- 0x06 Access Control.

- 0x07 Burglar.

- 0x08 Power Management.

- 0x09 System.

- 0x0a Emergency.

- 0x0b Clock.

Data holders:
« Visupported: boolean flag saying if version 1 (deprecated) is supported
« Vlevent : structure to store V1 events
. alarmType: V1 alarm type

197

D Command Class Reference

. level: V1 status
« typeMask: bit mask of supported alarm types
« [typeld]: subtree to store events of specific alarm types

. typeString: name of the alarm type

. status: flag with alarm status (alarm enabled/disabled)

. eventMask: bit mask of supported events of this alarm type
. event: last event ID

. eventString: last event name

. eventParameters: last event parameters

. eventSequence: internal

Command Alarm Get
Syntax: Get(type = 0, event = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Alarm Get. Requests the status of a specific event of a specific alarm type

Parameter type: Type of alarm to get level for. 0 to get level for all supported alarms (v2 and higher). 0xFF
to get level for first supported alarm (v2 and higher)

Parameter event: Notification event to get level for. This argument is ignored prior to Notification v3.
Must be 0 if type is 0xFF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Alarm type subtree updated

Command Alarm Set
Syntax: Set(type, level, successCallback = NULL, failureCallback = NULL)

Description: Send Alarm Set (v2 and higher). Enable/disable alarms of a specific type
Parameter type: Type of alarm to set level for
Parameter level: Level to set (0x0 = off, 0xFF = on, other values are reserved)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: Alarm type subtree updated

D.41 Command Class PowerLevel (0x73/115)
Version 1, Supported and Controlled
Used to set device power level and to test the link to a other devices in the network.
Data holders:
« level: Current power level (0 for normal power, 1..9 for -1..-9 dBm)

« timeout: Timeout of the power level set (after timeout the device turns back to normal power)
+ [nodeld]: Subtree with report of a test with nodeld

. status: Current test status (0 = Failed, 1 = Successfully finished, 2 = In progress)
. totalFrames: Total frames sent
. acknowledgedFrames: Acknowledged frames from total sent

Command PowerLevel Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

198

D Command Class Reference
Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level and timeout updated

Command PowerLevel Set
Syntax: Set(level, timeout, successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Set
Parameter level: Power level to set (from 0 to 9)
Parameter timeout: Timeout in seconds

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: level and timeout updated

Command PowerLevel TestNodeGet
Syntax: TestNodeGet(successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Test Node Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: subtree with report for the given node updated

Command PowerLevel TestNodeSet
Syntax: TestNodeSet(testNodeld, level, frameCount, successCallback = NULL, failureCallback = NULL)

Description: Send PowerLevel Test Node Set. Starts sending specified number of NOP packets to a given
device at a given power level. Once finished, unsolicited report MIGHT be sent by the device (at any time
you can use TestNodeGet)

Parameter testNodeld: Node to set test packets to
Parameter level: Power level to use (from 0 to 9)
Parameter frameCount: Number of test frames to send (from 1 to 65535)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: subtree with report for the given node updated

D.42 Command Class Z-Wave Plus Info (0x5E/94)

Version 2, Supported and Controlled
Describes device Z-Wave Plus role and type.

Data holders:
+ plusVersion: Z-Wave Plus version
« roleType: Z-Wave Plus role type
+ roleTypeString: Z-Wave Plus role type description
« nodeType: Z-Wave Plus node type
- installerlcon: Icon for installer
« userlcon: Icon for user

199

D Command Class Reference

Command ZWavePlusInfo Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ZWave+ Info Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.43 Command Class Firmware Update (0x7A/122)
Version 4, Controlled
Allows to update firmware of the device (OTA, Over-The-Air upgrade).

Data holders:
« upgradeable: Flag representing if the firmware is upgradable
« firmwareCount: Number of firmwares that can be updated using OTA (for multi chip devices, 0 is Z-Wave
chip only)
« updateStatus: Indicated the status of the update process
« waitTime: Time the device will take before rebooting with newly upgraded firmware
« manufacturerld: Manufacturere ID
« firmwareld: Firmware Id
« firmware[n]: Firmware Id of firmware [n]
+ checksum: Checksum of the firmware
« fragmentTransmitted: Number of fragments transmitted (useful to make progress bar)
« fragmentCount: Number of fragments to be transmitted in total (useful to make progress bar)
» fragmentSize: Internal
« firmwareData: Internal

Command FirmwareUpdate Get
Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Firmware Metadata Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: upgradeable, firmwareCount, updateStatus, manufacturerld, manufacturerld, firmwareld, firmware[n],
checksum updated

Command FirmwareUpdate Perform

Syntax: Perform(manufacturerld, firmwareld, firmwareTarget, data, successCallback = NULL, failureCall-
back = NULL)

Description: Send Firmware Update Request Get. On process start Z-Way sets fragmentCount:. de-
vices.N.instances.0.commandClasses.122.data.fragmentCount = 3073 (0x00000c01). Then it asks the de-
vice to start the process. The device can refuse it (i.e. if local confirmation timed out). If confirmed, the de-
vice will send us a report with adjusted fragment size (if it wants Z-Way to send by smaller packets) and re-
port "Ready” (updateStatus = 255, see below). devices.N.instances.0.commandClasses.122.data.updateStatus
= 255 (0x000000ff). devices.N.instances.0.commandClasses.122.data.fragmentCount = 3277 (0x00000ccd).
At this point fragmentTransmitted == 0. devices.N.instances.0.commandClasses.122.data.fragmentTransmitted
=0. Then device starts asking Z-Way for different packets. Z-Way will update fragmentTransmitted to al-
low track the process. Once done (fragmentCount == fragmentTransmitted), the device will send again

a report if the flashing was successful. updateStatus contains the status: checksum error = 0, assemble
error = 1, success, restart manually = 254, success, automatic restart = 255. waitTime refers to the time de-
vice will take to reboot. devices.N.instances.0.commandClasses.122.data.updateStatus = 255 (0x000000ff).
devices.N.instances.0.commandClasses.122.data.waitTime = 5 (0x00000005)

Parameter manufacturerld: Manufacturer Id (2 bytes)

200

D Command Class Reference

Parameter firmwareld: Firmware 1d (2 bytes)

Parameter firmwareTarget: Firmware target number (0 for main chip, 1..255 for additional chips). Used
only for CC v3 and above

Parameter data: Firmware image data in binary format (use hex2bin to convert from Intel Hex)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: updateStatus, waitTime, fragmentCount, fragmentTransmitted updated

D.44 Command Class Association Group Information (0x59/89)
Version 1, Supported and Controlled
Describes association groups defined by Association Command Class and command sent to group members.

Data holders:
« [groupld]: Subtree for grould

. groupName: Group name

. profile: Group profile Id

. mode: Internal. Reserved.

. eventCode: Internal. Reserved

. commands: Subtree for commands

. [commandClassld]: Command Class Id of the command sent to group members
. [commandIld]: Command Id corresponding to Command Class Id

« dynamic: Flag describing if the list can change and periodic request to update information is suggested

Command AssociationGrouplnformation Getlnfo
Syntax: GetInfo(groupld, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Info
Parameter groupld: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command AssociationGrouplnformation GetName
Syntax: GetName(groupld, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Name
Parameter groupld: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command AssociationGrouplnformation GetCommands
Syntax: GetCommands(groupld, successCallback = NULL, failureCallback = NULL)

Description: Send AGI Get Commands
Parameter groupld: Group Id to get info for (0 for all groups)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

201

D Command Class Reference

D.45 Command Class SwitchColor (0x33/51)

Version 3, Controlled

Allows to control color for multicolor lights including LED bulbs and LED strips. Device reports it’s capabilities:.
- 0 Warm White (0x00...0xFF: 0...100%).

- 1 Cold White (0x00:...0xFF: 0...100%).

- 2 Red (0x00...0xFF: 0...100%).

- 3 Green (0x00...0xFF: 0...100%).

- 4 Blue (0x00...0xFF: 0...100%).

- 5 Amber (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 6 Cyan (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 7 Purple (for 6ch Color mixing) (0x00...0xFF: 0...100%).

- 8 Indexed Color (0x00...0x0FF: Color Index 0...255).

Data holders:
« capabilityMask: Internal. Bit mask with supported capabilities
« [capabilityld]: Subtree for capabilityld
. capabilityString: Capability description
. level: Level of capability

Command SwitchColor Get
Syntax: Get(capabilityld, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchColor Get
Parameter capabilityld: Capability Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command SwitchColor Set
Syntax: Set(capabilityld, state, duration = 0xff, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchColor Set
Parameter capabilityld: Capability Id
Parameter state: State to be set for the capability

Parameter duration: Duration of change:. 0 instantly. 0x01..0x7f in seconds. 0x80...0xfe in minutes
mapped to 1...127 (value 0x80=128 is 1 minute). 0xff use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command SwitchColor SetMultiple
Syntax: SetMultiple(capabilitylds, states, duration = 0xff, successCallback = NULL, failureCallback =
NULL)

Description: Send SwitchColor SetMultiple
Parameter capabilitylds: Array of capabilities to set
Parameter states: Array of state values to be set for the capabilities

Parameter duration: Duration of change:. 0 instantly. 0x01..0x7f in seconds. 0x80...0xfe in minutes
mapped to 1...127 (value 0x80=128 is 1 minute). 0xff use device factory default

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

202

D Command Class Reference

Command SwitchColor StartStateChange

Syntax: StartStateChange(capabilityld, dir, ignoreStartLevel = TRUE, startLevel = 50, successCallback =
NULL, failureCallback = NULL)

Description: Send SwitchColor StartStateChange

Parameter capabilityld: Capability Id to start changing state for

Parameter dir: Direction of change: 0 to incrase, 1 to decrase

Parameter ignoreStartLevel: If set to True, device will ignore start level value and will use it’s curent value
Parameter startLevel: Start level to change from

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command SwitchColor StopStateChange

Syntax: StopStateChange(capabilityld, successCallback = NULL, failureCallback = NULL)
Description: Send SwitchColor StopStateChange
Parameter capabilityld: Capability Id to stop changing state for

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.46 Command Class BarrierOperator (0x66/102)

Version 1, Controlled

Allows to control barriers and garage doors as well as their signal lamps.

Data holders:

state: Barrier state
signalMask: Internal. Bit mask of available signals
[signalld]: Subtree for signal

signalTypeString: Signal description

state: Signal state

Command BarrierOperator Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)
Description: Send BarrierOperator Get

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command BarrierOperator Set

Syntax: Set(state, successCallback = NULL, failureCallback = NULL)
Description: Send BarrierOperator Set
Parameter state: State to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

203

D Command Class Reference
Command BarrierOperator SignalGet
Syntax: SignalGet(signalType, successCallback = NULL, failureCallback = NULL)
Description: Send BarrierOperator Signal Get
Parameter signalType: Signal subsystem type to get state for

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Command BarrierOperator SignalSet
Syntax: SignalSet(signalType, state, successCallback = NULL, failureCallback = NULL)

Description: Send BarrierOperator Signal Set
Parameter signalType: Signal subsystem type to set state for
Parameter state: State to set

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.47 Command Class SimpleAVControl (0x94/148)

Version 4, Supported and Controlled
Allows to control A/V devices.

Data holders:
« bitmask: Bit mask with supported keys. Refer to Expert Ul pyzw_zwave.js or Sigma Designs documentation
for description of buttons.
« bitmasks: Internal
« sequenceNumber: Internal
«+ reportsNumber: Internal

Command SimpleAVControl Set
Syntax: Set(keyAttribute, avCommand, successCallback = NULL, failureCallback = NULL)

Description: Send SimpleAVControl Set
Parameter keyAttribute: 0 for key Down, 1 for key Up, 2 for key Alive (repeated every 100...200 ms)
Parameter avCommand: Command to be sent. One of 465 predefined in Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

D.48 Command Class Security (0x98/152)
Version 1, Supported and Controlled
This Command Class is transparently implemented in the library. There are no functions to execute.

Data holders:
« controller->data->secureControllerld: Node Id of secure controller: node that established secure channel
when we are secondary controller (this data is on controller data tree)
« device->data->secureChannelEstablished: Flag describing if security interview was successful and secure
channel is established (this data is on device data tree)
« secureNodelnfoFrame: Secure Node Information Frame

204

D Command Class Reference

« securityAbandoned: Security interview failed
« scheme: Secure scheme supported

- securityRequested: Internal

« rNonce: Internal

« rNonceAckWait: Internal

« canStream: Internal

« firstPart: Internal

- sequenceld: Internal

« toFollow: Internal

D.49 Command Class CRC16 (0x56/86)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to use better 16 bits packet checksum. There are no
functions to execute.

Data holders:
« crc16Requested: Internal

D.50 Command Class MultiCmd (0x8F/143)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to save battery life time. There are no functions to
execute.

Data holders:
« maxNum: Max number of packets to be encapsulated. Can be tunned to lower (to workaround buggy devices,
1 to turn off) or rise (to get bettery performance)

D.51 Command Class Supervision (0x6C/108)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to guarantee delivery report on every command
(even on Set). There are no functions to execute.

Data holders:
« [sessionld]: Subtree with session status

. status: Current session status (0 = Not supported, 1 = Working, 2 = Fail, 3 = Busy, 255 = Success)
. duration: Expected time to finish the operation
. moreStatusUpdates: True if more updates on the session status are expected

« lastSession: Internal

D.52 Command Class Application Status (0x22/34)

Version 1, Supported and Controlled

This Command Class is transparently implemented in the library to retry on device Busy report. There are no functions
to execute.

205

D Command Class Reference

D.53 Command Class Version (0x86/134)
Version 2, Supported and Controlled
Allows to get version of each Command Class supported by the device as well as firmware version.

Data holders:
« commandClass->data->version: Version of specific Command Class (this data is on Command Class data
tree)
« ZWLib: SDK library type
« ZWProtocolMajor: SDK version major
« ZWProtocolMinor: SDK version minor
« SDK: SDK description
« applicationMajor: Application version major
« applicationMinor: Application version minor
+ hardwareVersion: Hardware revision of the device
« firmwareCount: Number of chips (firmwares) in the device (excluding Z-Wave chip)
« [firmwareld]: Subtree for firmwareld information
. major: Additional chip application version major
. minor: Additional chip application version major

D.54 Command Class DeviceResetLocally (0x5A/90)

Version 1, Supported and Controlled
Reports to the controller that device was resetted locally (using local button operation).

Data holders:
« reset: Becomes True if the device sent us DeviceResetLocally notification. This means the device is certainly
not in our network anymore

D.55 Command Class Central Scene (0x5B/91)

Version 3, Supported and Controlled

Allows to receive central controller oriented scene actions. Scenes are triggered by pushing a button on a remote
control or wall controller. Note that Z-Way supports only V1, but in most cases you don’t need it to be enabled in the
NIF. Controlled version is V3.

Data holders:

« maxScenes: Number of scenes supported

« slowRefreshSupport: Flag to indicate if the device supports Slow Refresh mode

- slowRefresh: Flag to indicate if the device is currently in Slow Refresh mode

« currentScene: Last activated scene

« keyAttribute: Button (or key) action: 0 for key press, 1for key release, 2 for key held down (should bre repeated
at least every 200ms)

- sequence: Internal. To ignore duplicate packats.

« sceneSupportedKeyAttributesMask: Holds the list of supported key attributes for each scene

. [sceneld]: Array of supported key attributes for Scene Id: 0 for 1 press, 1 for release after hold, 2 for hold,
3..6 for 2..5 presses

206

E Function Class Reference

207

E Function Class Reference
Function Class GetSerial APICapabilities
Syntax: GetSerial APICapabilities(successCallback = NULL, failureCallback = NULL)
Description: Request Serial APl capabilities

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: capabilities, manufacturerld, manufacturerProductld, manufacturerProductType, APIVersion, ven-
dor

Function Class SerialAPISetTimeouts
Syntax: SerialAPISetTimeouts(ackTimeout, byteTimeout, successCallback = NULL, failureCallback = NULL)

Description: Set Serial API timeouts
Parameter ackTimeout: Time for the stick to wait for ACK (in 10ms units)
Parameter byteTimeout: Time for the stick to assemble a full packet (in 10ms units)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: curSerial APIAckTimeout10ms, curSerial APIByteTimeout10ms, oldSerial APIAckTimeout10ms, old-
Serial APIByteTimeout10ms

Function Class Serial APIGetInitData
Syntax: Serial APIGetInitData(successCallback = NULL, failureCallback = NULL)

Description: Request initial information about devices in network

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: ZW Version, ZWaveChip, list of Z-Wave devices is generated

Function Class Serial APIApplicationNodelnfo
Syntax: Serial APIApplicationNodelnfo(listening, optional, flirs1000, flirs250, genericClass, specificClass,
nif, successCallback = NULL, failureCallback = NULL)

Description: Set controller node information
Parameter listening: Listening flag

Parameter optional: Optional flag (set if device supports more CCs than described as mandatory for it’s
Device Type)

Parameter flirs1000: FLiRS 1000 flag (hardware have to be based on FLIiRS library to support it)
Parameter flirs250: FLiRS 250 flag (hardware have to be based on FLiRS library to support it)
Parameter genericClass: Generic Device Type

Parameter specificClass: Specific Device Type

Parameter nif: New NIF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class WatchDogStart
Syntax: WatchDogStart(successCallback = NULL, failureCallback = NULL)

Description: Start WatchDog

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

208

E Function Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class WatchDogStop
Syntax: WatchDogStop(successCallback = NULL, failureCallback = NULL)

Description: Stop WatchDog

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class GetHomeld
Syntax: GetHomeld(successCallback = NULL, failureCallback = NULL)

Description: Request Home Id and controller Node Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: homeld, nodeld

Function Class GetControllerCapabilities
Syntax: GetControllerCapabilities(successCallback = NULL, failureCallback = NULL)

Description: Request controller capabilities (primary role, SUC/SIS availability)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: isinOthersNetwork, isPrimary, isRealPrimary, isSUC, isSUC, SISPresent

Function Class GetVersion
Syntax: GetVersion(successCallback = NULL, failureCallback = NULL)

Description: Request controller hardware version

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: ZWLib, ZWProtocolMajor, ZWProtocolMinor, libType, SDK, devices[ctrlld].data.ZWLib, devices[ctrlld].data.ZWProto
devices[ctrlld].data.ZWProtocolMinor, devices[ctrlld].data.SDK

Function Class GetSUCNodeld
Syntax: GetSUCNodeld(successCallback = NULL, failureCallback = NULL)

Description: Request SUC Node Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: SUCNodeld

Function Class EnableSUC
Syntax: EnableSUC(enable, sis, successCallback = NULL, failureCallback = NULL)

Description: Enable or disable SUC/SIS functionality of the controller
Parameter enable: True to enable functionality, False to disable

Parameter sis: True to enable SIS functionality, False to enable SUC only

209

E Function Class Reference
Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SetSUCNodeld
Syntax: SetSUCNodeld(nodeld, enable, sis, successCallback = NULL, failureCallback = NULL)

Description: Assign new SUC/SIS or disable existing

Parameter nodeld: Node Id to be assigned/disabled as SUC/SIS
Parameter enable: True to enable, False to disable

Parameter sis: True to assign SIS role, False to enable SUC role only

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class MemoryGetByte
Syntax: MemoryGetByte(offset, successCallback = NULL, failureCallback = NULL)

Description: Read single byte from EEPROM
Parameter offset: Offset in application memory in EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: memoryGetData, memoryGetAddress

Function Class MemoryGetBuffer
Syntax: MemoryGetBuffer(offset, length, successCallback = NULL, failureCallback = NULL)

Description: Read multiple bytes from EEPROM
Parameter offset: Offset in application memory in EEPROM
Parameter length: Number of byte to be read

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: memoryGetData, memoryGetAddress

Function Class MemoryPutByte
Syntax: MemoryPutByte(offset, data, successCallback = NULL, failureCallback = NULL)

Description: Write single byte to EEPROM
Parameter offset: Offset in application memory in EEPROM
Parameter data: Byte to be written

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class MemoryPutBuffer
Syntax: MemoryPutBuffer(offset, data, successCallback = NULL, failureCallback = NULL)

Description: Write multiple bytes to EEPROM
Parameter offset: Offset in application memory in EEPROM

Parameter data: Bytes to be written

210

E Function Class Reference
Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class NVMGetld
Syntax: NVMGetld(successCallback = NULL, failureCallback = NULL)

Description: Read type of extended EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: memoryCapacity, memoryManufacturerld, memoryType

Function Class NVMExtReadLongByte
Syntax: NVMExtReadLongByte(offset, successCallback = NULL, failureCallback = NULL)

Description: Read single byte from extended EEPROM
Parameter offset: Offset in application memory in EEPROM

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: memoryGetData, memoryGetAddress

Function Class NVMExtReadLongBuffer
Syntax: NVMExtReadLongBuffer(offset, length, successCallback = NULL, failureCallback = NULL)
Description: Read multiple bytes from exended EEPROM
Parameter offset: Offset in application memory in EEPROM
Parameter length: Number of byte to be read

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: memoryGetData, memoryGetAddress

Function Class NVMExtWriteLongByte
Syntax: NVMExtWriteLongByte(offset, data, successCallback = NULL, failureCallback = NULL)
Description: Write single byte to extended EEPROM
Parameter offset: Offset in application memory in EEPROM
Parameter data: Byte to be written

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class NVMExtWriteLongBuffer
Syntax: NVMExtWriteLongBuffer(offset, data, successCallback = NULL, failureCallback = NULL)
Description: Write multiple bytes to extended EEPROM
Parameter offset: Offset in application memory in EEPROM
Parameter data: Bytes to be written

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

211

E Function Class Reference
Function Class IsFailedNode
Syntax: IsFailedNode(nodeld, successCallback = NULL, failureCallback = NULL)
Description: Checks if node is failed
Parameter nodeld: Node Id to be checked

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: device[node_id].data.isFailed

Function Class SendDataAbort
Syntax: SendDataAbort(successCallback = NULL, failureCallback = NULL)
Description: Abort send data. Note that this function works unpredictably in multi callback environment
!
Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class Serial APISoftReset
Syntax: Serial APISoftReset(successCallback = NULL, failureCallback = NULL)

Description: Soft reset. Restarts Z-Wave chip

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SendData
Syntax: SendData(nodeld, data, description = NULL, successCallback = NULL, failureCallback = NULL)

Description: Send data. Packets are sent in AUTO_ROUTE mode with EXPLRER_FRAME enabled for
listening devices (ignored if not supported by the hardware [based on 5.0x branch])

Parameter nodeld: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)
Parameter data: Paket payload
Parameter description: Packet description for queue inspector and logging

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.lastSend

Function Class SendDataSecure
Syntax: SendDataSecure(nodeld, data, description = NULL, keyClass = 0, successCallback = NULL, fail-
ureCallback = NULL)

Description: Send data using security. Packets are sent in AUTO_ROUTE mode with EXPLRER_FRAME
enabled for listening devices (ignored if not supported by the hardware [based on 5.0x branch]). Ex-
plicitelly use security

Parameter nodeld: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)
Parameter data: Paket payload
Parameter description: Packet description for queue inspector and logging

Parameter keyClass: Security class to use: 0 - SO, 1 - S2 Unauthenticated, 2 - S2 Authenticated, 4 - S2
Access

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

212

E Function Class Reference
Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.lastSend

Function Class GetNodeProtocollnfo
Syntax: GetNodeProtocollnfo(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Get node protocol info
Parameter nodeld: Node Id of the device in question

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.isListening, devices[node_id].data.isRouting, devices[node_id].data.optional,
devices[node_id].data.sensor1000, devices[node_id].data.sensor250, devices[node_id].data.infoProtocolSpecific

Function Class GetRoutingTableLine
Syntax: GetRoutingTableLine(nodeld, removeBad = FALSE, removeRepeaters = FALSE, successCallback =
NULL, failureCallback = NULL)

Description: Get routing table line

Parameter nodeld: Node Id of the device in question

Parameter removeBad: Exclude failed nodes from the listing
Parameter removeRepeaters: Exclude repeater nodes from the listing

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.neighbours

Function Class AssignReturnRoute
Syntax: AssignReturnRoute(nodeld, destld, successCallback = NULL, failureCallback = NULL)

Description: Assign return route to specified node. Get Serial API capabilities
Parameter nodeld: Node Id of the device that have to store new route
Parameter destld: Destination Node Id of the route

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class AssignSUCReturnRoute
Syntax: AssignSUCReturnRoute(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Assign return route to SUC
Parameter nodeld: Node Id of the device that have to store route to SUC

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class DeleteReturnRoute
Syntax: DeleteReturnRoute(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Delete return route
Parameter nodeld: Node Id of the device that have to delete all assigned return routes

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

213

E Function Class Reference

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class DeleteSUCReturnRoute
Syntax: DeleteSUCReturnRoute(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Delete return route to SUC
Parameter nodeld: Node Id of the device that have to delete route to SUC

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SetDefault
Syntax: SetDefault(successCallback = NULL, failureCallback = NULL)

Description: Reset the controller. Note: this function will delete ALL data from the Z-Wave chip and
restore it to factory default !. Sticks based on 4.5x and 6.x SDKs will also generate a new Home Id

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: lastExcludedDevice, lastIncludedDevice

Function Class SendSUCNodeld
Syntax: SendSUCNodeld(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Send SUC Node Id. Informs portable and static controllers about new or deleted SUC/SIS
Parameter nodeld: Node Id of the device that have to be informed about new or deleted SIC/SIS

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SendNodelnformation
Syntax: SendNodelnformation(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Send NIF of the stick
Parameter nodeld: Destination Node Id (NODE_BROADCAST to send non-routed broadcast packet)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class RequestNodelnformation
Syntax: RequestNodelnformation(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Request NIF of a device
Parameter nodeld: Node Id to be requested for a NIF

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.nodelnfoFrame

214

E Function Class Reference
Function Class RemoveFailedNode
Syntax: RemoveFailedNode(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Remove failed node from network. Before removing SDK will check that the device is really
unreachable

Parameter nodeld: Node Id to be removed from network

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: lastExcludedDevice

Function Class ReplaceFailedNode
Syntax: ReplaceFailedNode(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Replace failed node with a new one. Be ware that a failed node can be replaced by a node of
another type. This can lead to probles!. Always request device NIF and force re-interview after successful
replace process

Parameter nodeld: Node Id to be replaced by new one

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: lastincludedDevice, controllerState

Function Class RequestNetworkUpdate
Syntax: RequestNetworkUpdate(successCallback = NULL, failureCallback = NULL)

Description: Request network topology update from SUC/SIS. Note that this process may also fail due
more than 64 changes from last sync. In this case a re-inclusion of the controller (self) is required

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class RequestNodeNeighbourUpdate
Syntax: RequestNodeNeighbourUpdate(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Request neighbours update for specific node
Parameter nodeld: Node Id to be requested for it’s neighbours

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: devices[node_id].data.neighbours

Function Class SetLearnMode
Syntax: SetLearnMode(startStop, successCallback = NULL, failureCallback = NULL)

Description: Set/stop Learn mode. Tries first classical inclusion then falls back to NWI automatically. Use
zway_controller_set_learn_mode instead to get correctly set up the environment after inclusion

Parameter startStop: Start Learn mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

215

E Function Class Reference

Function Class AddNodeToNetwork

Syntax: AddNodeToNetwork(startStop, highPower = TRUE, successCallback = NULL, failureCallback =
NULL)

Description: Start/stop Inclusion of a new node. Available on primary and inclusion controllers
Parameter startStop: Start inclusion mode if True, stop if False
Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class RemoveNodeFromNetwork

Syntax: RemoveNodeFromNetwork(startStop, highPower = FALSE, successCallback = NULL, failureCall-
back = NULL)

Description: Start/stop exclusion of a node. Note that this function can be used to exclude a device from
previous network before including in ours. Available on primary and inclusion controllers

Parameter startStop: Start exclusion mode if True, stop if False
Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class RemoveNodeldFromNetwork

Syntax: RemoveNodeldFromNetwork(nodeld, startStop, highPower = FALSE, successCallback = NULL,
failureCallback = NULL)

Description: Start/stop exclusion of a node id. Note that this function can be used to exclude a device
from previous network before including in ours. Available on primary and inclusion controllers

Parameter nodeld: Nodeld to exclude. If 0 or > 232, any node will be excluded (like with zway_fc_remove_node_from_network
/ RemoveNodeFromNetwork)

Parameter startStop: Start exclusion mode if True, stop if False
Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class ControllerChange
Syntax: ControllerChange(startStop, highPower = TRUE, successCallback = NULL, failureCallback = NULL)

Description: Set new primary controller (also known as Controller Shift). Same as Inclusion, but the newly
included device will get the role of primary. Available only on primary controller

Parameter startStop: Start controller shift mode if True, stop if False
Parameter highPower: Use full power during this operation if True. On False use low power mode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

216

E Function Class Reference
Function Class CreateNewPrimary
Syntax: CreateNewPrimary(startStop, successCallback = NULL, failureCallback = NULL)

Description: Create new primary controller by SUC controller. Same as Inclusion, but the newly included
device will get the role of primary. Available only on SUC. Be careful not to create two primary controllers!
This can lead to network malfunction!

Parameter startStop: Start create new primary mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: controllerState, lastExcludedDevice, lastIncludedDevice

Function Class ZMEFreqChange
Syntax: ZMEFreqChange(freq, successCallback = NULL, failureCallback = NULL)

Description: Change Z-Wave.Me Z-Stick 4 frequency. This function is specific for Z-Wave.Me hardware

Parameter freq: 0x01 RU. 0x02 IN. 0x03 US. 0x04 ANZ. 0x05 HK. 0x06 CN. 0x07 JP. 0x08 KR. 0x09 IL. 0x0A
MY. 0xFF request current frequency (ZME firmwares prior to 5.03 don’t support this feature)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: frequency

Function Class RFPowerLevelSet
Syntax: RFPowerLevelSet(level, successCallback = NULL, failureCallback = NULL)

Description: Set RF power level to specified value
Parameter level: 0 to 9

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class RFPowerLevelGet
Syntax: RFPowerLevelGet(successCallback = NULL, failureCallback = NULL)

Description: Get RF power level current value

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SendTestFrame
Syntax: SendTestFrame(nodeld, level, successCallback = NULL, failureCallback = NULL)

Description: Send test frame to a node at a specified RF level
Parameter nodeld: Node Id to make test against
Parameter level: 0 to 9

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

217

E Function Class Reference
Function Class FlashAutoProgSet
Syntax: FlashAutoProgSet(successCallback = NULL, failureCallback = NULL)
Description: Put Z-Wave chip in Atuo Prog mode for USB/UART reflashing

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class ExploreRequestInclusion
Syntax: ExploreRequestinclusion(successCallback = NULL, failureCallback = NULL)

Description: Request NWI. Called from SetLearnMode

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class ExploreRequestExclusion
Syntax: ExploreRequestExclusion(successCallback = NULL, failureCallback = NULL)

Description: Request NWE

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class ZMEBootloaderFlash
Syntax: ZMEBootloaderFlash(addr, successCallback = NULL, failureCallback = NULL)

Description: Start reflashing bootloader of Z-Wave.Me firmware for 5th generation Z-Wave chip. This
function is specific for Z-Wave.Me hardware

Parameter addr: address of new bootloader location in 2K sectors

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class ZMECapabilities
Syntax: ZMECapabilities(data = NULL, successCallback = NULL, failureCallback = NULL)

Description: Get or set firmware capabilities. This function is specific for Z-Wave.Me hardware
Parameter data: data to set (NULL to get)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: caps, uuid

Function Class ZMEPHISetLED
Syntax: ZMEPHISetLED(led, status, successCallback = NULL, failureCallback = NULL)

Description: Activate LEDs on Philio hw. This function is specific for Philio hardware
Parameter led: LED id: 0x10 (Logo), 0x11 (Around), 0x12 (Misc)
Parameter status: LED status 2 (Off), 4 (On), 8 (Flash), 16 (Slow flash), 32 (Slow dimming)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

218

E Function Class Reference

Function Class ZMEPHIGetButton
Syntax: ZMEPHIGetButton(button, successCallback = NULL, failureCallback = NULL)
Description: Get button state on Philio hw. This function is specific for Philio hardware
Parameter button: 0: Tamper Key, 1: Function Key A, 2: Function Key B

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: philiohw.tamper, philiohw.funcA, philiohw.funcB

Function Class ZMEPHIGetPower
Syntax: ZMEPHIGetPower(successCallback = NULL, failureCallback = NULL)
Description: Get power state on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: philiohw.powerFail, philiohw.batteryLevel, philiohw.charging, philiohw.batteryFail

Function Class ZMEPHIGetBattery
Syntax: ZMEPHIGetBattery(successCallback = NULL, failureCallback = NULL)
Description: Get battery state on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: philiohw.batteryADCLevel

Function Class ZMEPHIGetRTC
Syntax: ZMEPHIGetRTC(successCallback = NULL, failureCallback = NULL)
Description: Get RTC from Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Report: set system time

Function Class ZMEPHISetRTC
Syntax: ZMEPHISetRTC(successCallback = NULL, failureCallback = NULL)
Description: Set RTC on Philio hw. This function is specific for Philio hardware

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class InjectPacket
Syntax: InjectPacket(nodeld, data, successCallback = NULL, failureCallback = NULL)
Description: Inject command in Z-Way as it was received via Z-Wave. This function is for debugging only
Parameter nodeld: Source Node Id
Parameter data: Paket payload (should looks like ccld, ccCmd, data,)

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

219

E Function Class Reference
Function Class GetBackgroundRSSI
Syntax: GetBackgroundRSSI(successCallback = NULL, failureCallback = NULL)
Description: Get background noise level

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class Serial APISetup
Syntax: Serial APISetup(function, enable, successCallback = NULL, failureCallback = NULL)

Description: Configure Z-Wave Serial API

Parameter function: Configure specific Serial API function. Currently only enable/disable IMA is sup-
ported (function = 0x02)

Parameter enable: Set feature state: True to enable, False to disable

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class ClearNetworkStats
Syntax: ClearNetworkStats(successCallback = NULL, failureCallback = NULL)

Description: Clear statistics gathered by the Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class GetNetworkStats
Syntax: GetNetworkStats(successCallback = NULL, failureCallback = NULL)

Description: Get statistics gathered by the Z-Wave protocol

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class GetPriorityRoute
Syntax: GetPriorityRoute(nodeld, successCallback = NULL, failureCallback = NULL)

Description: Get the route with the highest priority
Parameter nodeld: Node ID we are interested in

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SetPriorityRoute

Syntax: SetPriorityRoute(nodeld, repeater1, repeater2, repeater3, repeater4, routeSpeed, successCallback
= NULL, failureCallback = NULL)

Description: Set the route with the highest priority
Parameter nodeld: Node ID we are interested in

Parameter repeater1: Hop #1 in the route. Value 0 means direct range. Values > 232 clears the priority
route and LWR (Last Working Route is selected by the protocol)

Parameter repeater2: Hop #2 in the route. Value 0 means end of route

Parameter repeater3: Hop #3 in the route. Value 0 means end of route

220

E Function Class Reference

Parameter repeater4: Hop #4 in the route. Value 0 means end of route

Parameter routeSpeed: Baudrate to use: 1 for 9.6 kbps, 2 for 40 kbps, 3 for 100 kbps. Value 0 means end
of route

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

Function Class SetPromiscuousMode
Syntax: SetPromiscuousMode(enable, successCallback = NULL, failureCallback = NULL)

Description: Enable or disable promiscuous mode
Parameter enable: True to enable functionality, False to disable

Parameter successCallback: Custom function to be called on function success. NULL if callback is not
needed

Parameter failureCallback: Custom function to be called on function failure. NULL if callback is not
needed

221

F List of supported EnOcean devices

F.1 NodOn

« Wall Switch CWS-2-1-xx

« Soft Remote CRC-2-6-xx

« Card Switch CCS-2-1-01

« Door Window Sensor SDO-2-1-xx
» Temperature Sensor STP-2-1-xx

F.2 Thermokon

« Door Sensor SRWO01

« Motion Detector SR-MOC
» Motion Detector SW-MOW
« Card Reader SR-KCS

- Wall Controller 55x55

F.3 Hubbel

« Motion Sensor wiSTAR OS

« Card Reader wiSATR Key Card

« Single Rocker Wall Controller wiStar
« Dual Rocker Wall Controller wiStar

F.4 AWAG

« Door Window Sensor FK101
« Card Reader KSM-CH
« Wall Controller WS-CH-102

F.5 Hoppe

« Door Sensor STM250

F.6 Schneider Elektrik

« Temperature Sensor SED-WDS
» Motion Detector SED-CMS

« Card Reader SED-KCS

« Wall Controller AED-1RS

F.7 PEHA

« Door Sensor FU FK

« Motion Detector FUB-BM

« Motion Detector FUB-BM DE
« Card Reader FU-BLS

« Wall Controller FU BLSN

« Wall Controller FU BLSJR

« Wall Controller FU BLSN-2

222

F List of supported EnOcean devices

Wall Controller FU BLSN

Eltako

Wall Controller FT4-rw
Motion detector FABH65
Door Sensor FTKB-rw

EnOcean GmbH

Door Sensor STM250

Motion Detector EOSC

Motion Detector EOSW

Card Reader EKCS

Single Rocker Wall Controller PTM210
Dual Rocker Wall Controller PTM215

223

List of Tables

3.1 Comparison of Access methods| 19
[8.1 Troubleshooting on Z-Wave networks| 100
11.1 Different APIs of the Z-Way ' system|. 122
11.2 Parameters of the Job Queue Vizualization| 131
|12.1 vDev device types with metrics and commands| L0 L L. 148
[13.1 Module.json details| 155
[(32 Details of Indexjs| o e 157

224

List of Figures

|2.1 RazBerry on top of a RasEbeer Pi|

2.2 omponents on RaZberry Hardware| L
2.3 Frequency Change Option in Z-WAVE EXPERT USER INTERFACE|

25 UZBlicense upgrade| L

[3.1 Folder Content of Z-Way ™ |
[327 Z-Wave Network Access APp|. . . « « o o o v o e e
3.3 Z—Waym Windows Setup Wizard|
3.4 Z—Waxm Windows Installationl ...
.............................

|3.6 Z-Wave Network Access App with COM Port]
IE:; 2_!yay§ as !! illdQ&yS Sel&igel ..

[3.8 Initial setup of the Z—Waym User Interface|

|3.9 Loginonlocal IPaddress|

3.10 Remote Login Screen| L

[4.3 Elements configuration -upperpart|. L L

[£4 Elements configuration - fower part]

4.10 Configuration menul. o L e
471 Local Apps| o o
4.12 Online Apps| e e e e
4.13 App Setup|
[4.14 Active App Management|

4.15 Device Management Overview|. e e e e e e e

416 Scan QR Code for Smart Start] o o o v o e e
4.17 _Z-Wave Device Vendor OVEIVIEW! o o v v i i e e e e e e e e e e e

[4.18 Z-Wave Device Inclusion Dialog] ..

[4.19"Z-Wave Device Exc!usion Dia!oé]
420 Z-Wave Device Successful Inclusion] i

4.33 My Settings Dialog -upperpart]
4.34 My Settings Dialog - lower part]ot

4.35 List of Z-Way news|

225

List of Figures

[4.36 Administrator Management Menu|. Lo Lo 43
[4.37 User Management|. L 43
:4.38 emote Access Management| L L L L e e e e e e 44
:4.39 ime Zone Management| L L e e e e e e e e e 44
[4.40 Automated BackupintoCloud] 45
B.47 TocalBackand Restorel oo it e e e 45

4.42 Firmware Update Options| 46
4.43 Firmware UEgate Dia!oé] .. 47

[a.44 TOre ACCESS| o o e 48
[445 Problem Reporting Form| 43
5.1 Web User Interface on small mobile screen| o oo 50
5.2 Mobile App Icon from App Store|. e 50
.. 51
-4 Nativefastapp forAndroid|. 51
B.5 Tmperthome Appl. 52
[5.6 Z—Waym app to support Fibaro Mobile App|. 52
[5.7 Fibaro Mobile App|. e 53
6.1 The Open Weather app in the App Repository| 55
6.2 The Open Weather app configuration]ottt 56
6.3 The Scene ADDl -+ 56
6.4 The Scene Elementl oot vt ittt 57
6.5 Schedule - an scheduled Scene| 57
6.6 If->Then App|. o e 57
6.7 If->Then App Configuration Dialog] o oo v v v e e e e e 58
[6.8 Association App| 59
[6:9 TogicalRule] 59
[6.10 Togical Rule] e 60
6.11 Dummy Device| o e 60
6.12 Leakage Protection App|. L 60
6.13 Leakage Protection element-armed| L Lo oL 61

6.14 Leakage Protection element- alarm| 61
:6.15 LeaEage Protection element- wait for cleaﬂ 61

6.6 Leakage Protection ApPp|. o v o o o v e e e e 62
6.17 Fire Protection element -armed| L 62
6.18 Security System| L 62
6.19 Security System im disarm status| 63
[6:20 Security System im armstatus|. 63
6.21 Security System in alarmstatus| oL 63
6.22 Climate Control App| o e 64
6.23 Climate Control App Element| 64
[6.24 Climate Control App Element -roomview| 65
[625 Email App] 65
6.26 e Homekit Integration| e 66
6.27 Tntchart.com Integration]o 66
6.28 Astronomy App| L e 67
6.29 Amazon Alex Integration| L 68
6.30 Philips Hue Integration| 68
63T HTTP devicel oo 68
6.32 HTTP device - Configuration dialog for currency exchange “SENSOI| . . e 69
6.33 Currency Exchange Element| o 69
[7.1__Sceenshot of the Expert User Interface Home Screen| 71
[7.27 Control Interface for Switches, Dimmers and Motor Controls| 71
2.3 Control Interface for Sensors| L 72
[Z4_ControlInterface for Meters 72
[Z.5___Control Interface for Thermostatsl 73
[2.6__Control Interface for Locks| L 73
[2.7__Control Interface for Notification Devices|. 74
.8 Device status overview| L e e 74

226

List of Figures

7.9 Device information overview| 75
[7.10 Battery status overview| 76
[Z11_Active associalion OVEIVIEWl. oo oottt e 76
[Z12_DeviceInterviewl L e e e e e 77
[7.13_Configuration - convenient VIiew| 78
7.14 Configuration - @eneric VIEW| L e e e 79
[715 Associationdialog| 79
inkhealthl 0 80

[707 Expertscommands| 81
7.18 Network Management| 82
7.19 Z-WAVE EXPERT USER INTERFACE - 52 key selection| 83
7.20 Z-WAVE EXPERT USER INTERFACE - S2 key display| 83
[7.21 Expert User Interface - S2 authentication| 84
E.22 Smart Start - enter Device Key (DSK)] oo i i i 84
E.23 Smart Start - scan QR code (on smart phonesonly|. L o o oo 84
[7.24 Smart Start Provisioning list] 85
[7.25 Z-W::lym - own key for authentication|. 85
[726 Neighbors| 86
[7.27 Reorganization|. 87
228 Poltorak-CRartl. o ottt e 88
[7.29 TimingInfol. 88
Z30 LINKSTAatUus] . -« o o oo o e e e e e 89
[7.31 ControllerInfol e 90
7.32 Job Queue| L 91
[8.1 Background Noise|. 93
[8.:2 Realtime Measurement of Background-Noise| 93
[8.3 Powerbank to power the Z-Way ' controller for mobile use|. 94
[84 Network Statistics Display] o o 94
8.5 Status Page Z-Way | 95
B.6 Packet SNIffer] o o v et 95
[8.7 Paket timing of a fresh Z-Wave network] 0 0 96
[3:8" Paket timing of an aged Z-Wave network] L L L L Lo 97
[B-9 Neighbor-Table of acontroller] 97
B0 Linktestofanodel. oo v it 98
[8.11 Association Dialog in Z-WAVE EXPERT USERINTERFACE | 99
[9.1 Inclusion of predefined cameras| 102
02 Genericcameramodulel. 102
[9.3 More camera support in App Store| L 102
[0.4Web browser debug interface]. 103
9.5 Popp 433 MHz Gateway| 104
9 R App o) 105
.. 105
.8 433 MHz gateway setup dialog|. L 106
9.9 433 MHzoptionin 'Devices’| 107
Nl . 108

[9.11 433 MHz teach inof abinary sensor|. 108
E.12 433 MHz device management| 108
.. 109
14 EnOCean App CONFGUIATION . . . « « « o o o oo oo oo oo 109
015 EnOceanTeachInl 110
[9.16 EnOcean Device Configuration after Teach-In| 110
©17 EnOcean Device EIEMENES| . - « « . o o o v ovv et e e e 111
9.18 EnOcean Device Management| L 111

[0 SkinSetup] 112
[10.2 SEin girectorz structue| ... 113

003 GotomenuSKINl. . . o v o v vttt e e 115
10.4 Upload new Skin|. o 115
10.5 Select the packed Skin| 116

227

List of Figures

10.6 Select the lconpack|. 117
10.7 Manage anlconpack| L 117
11.1 Z-Waym APls and their use by GUl demos| 120
11.2 Z-W::lym Object Tree Structure|. oo 124
11.3 Z—Waym TIMINGS| ot e e e e 125
11.4 Z—Wayfiz Function Classes| e 126
11.5 Z—WaxTM Expert Command Class Commandsl 127
: Command Class Inerview overviewl e 128
(1.7 Command Class Variables in Z-WAVE EXPERT USER INTERFACE| 129
[11.8 Terminal running z-way-test| L 137

228

Index

Android App, [48]
Apps, 23} [29]
Association,[77]
Associations, [74]

Backup & Restore,
BackupandRestore, [83]

Battery,

CE,[12
Configuration,[76

Device Types,[74]
Devices,

Elements,

Elements Configuration,
Events,

Exclusion, [32}[80]

Expert User Interface, [69]

FCC,[13]

Fibaro, [51]

File Descriptions,[128
Files,[128]

Firmware Update, [45] [79]
Folder,[128]

Folder Structure,[128

Frequency,[12}[84]
Hardware,

Imperihome, [48]
Inclusion,[32] [80]
Installation,
Integration, [52]
Interview, [76]

10S App, 38|

JavaScript Engine,[136]
Link Health,[79] [85]

Mobile, [48]
Mobile Apps, [48]
My Settings, 39]

News Feed,[29]

PHP Script, 52
Privacy, [20]

Raspberry Pi,[10]
RaZberry,
Remote Access,[17}[42]
Reset, [45]

229

Rooms,

Security, [20]
shui,[23]

Time Zone,[43]

USB Stick, [T3]
UZB, 13 [Tq]

vDev, [145]
Virtual Device, [145|

Windows, [17]

Z-Wave Basics,
Z-Wave Literature, [§|

	Introduction
	Structure of the book
	History of Z-Way
	Status of the document

	Z-Way™ enabled Hardware
	RaZberry shield board for Raspberry Pi
	Compatibility
	Pinout and options on board
	Boot-Up Self-Test
	LEDs during Operation
	Frequencies
	Certifications

	The USB Stick UZB
	Boot-Up Self-Test
	Frequencies
	Certifications

	Other hardware platforms

	Preparation and Ways to Access the System
	Installation on Raspberry Pi
	Installation on other platforms using UZB
	Unix-based Platforms
	Windows

	Local and Remote Access
	Security and Privacy

	The Web Browser User Interface
	Z-Way Smart Home InterfaceDaily Usage
	Standard Element View
	News feed

	The Configuration Menu
	Apps
	Devices
	Customize
	My Settings
	Management

	The Management Interface
	User Management
	Remote Access Management
	Time Zone
	Backup & Restore
	Factory default
	Firmware Update
	App Store Access
	Report Problem
	Info

	Mobile Apps
	Standard mobile web browsers
	Native HTML based apps
	Pure Native Apps
	Third-Party Apps
	Imperihome
	Fibaro
	openHAB

	Shortcuts for Android and Integration into Third party software

	The App System: making it intelligent
	A simple Apps as starter - 'Local Weather'
	Smart Home Logic
	Scene
	If -> Then
	Logical Rule: If->Then on steroids
	Tips and Tricks

	The big apps
	Leakage Protection
	Fire Protection
	Burglar Alarm System
	Climate Control

	Out-of-band notifications
	Push Notifications
	Email ME
	Other notifiers

	Useful tools and utilities
	Apple HomeKit
	Intchart.com
	Astronomy App
	Alexa Integration
	Philips Hue Integration

	For Developers

	The Z-Wave Expert User Interface
	Home Screen
	Control
	Switch
	Sensors
	Meters
	Thermostats
	Locks
	Notifications

	Device
	Status
	Type Info
	Battery
	Active Associations

	Configuration
	Interview
	Configuration
	Association
	Link Health
	Expert Commands
	Firmware Update

	Network
	Control
	Neighbors
	Reorganization
	Network Map
	Timing Info
	Link Status
	Controller Info

	Analytics
	Setup
	Job Queue

	Troubleshoot the Z-Wave Network
	Radio Layer
	Network Layer - Devices
	Network Layer - Weak or Wrong Routes
	Application Layer Settings
	Polling
	Dead Associations
	Wrong Wakeup Settings

	Summary

	Extending the systems beyond Z-Wave
	IP-Cameras
	How to find out if a camera is supported by Z-Way™ ?
	How to prepare for integration?
	How to find the IP address of the camera?
	How to integrate the camera into Z-Way™ ?
	How to support a camera not on the list yet?

	433 MHz devices
	Introduction
	433 MHz Gateway
	How to setup the 433 MHz Gateway

	EnOcean devices
	Other IP/Internet-based services

	Customize your system
	Skins
	Step 1 - Do you own Skin
	Step 2 - Do your own Images
	Step 3 - Test the new Skin
	Step 4 - Change colors, fonts, shapes – almost
	Step 5 - Going into the SASS world
	Step 6 - Changing SASS
	Step 7 - Create the final Skin for friends, family and the public
	Step 8 - Distribute your Skin
	Step 9 - Rewind in case something goes wrong

	Icon Sets
	Create Your own Icons
	Create an Icon Pack
	Upload your Icon Set

	How to translate the Z-Way™ to your language
	Smart-Home User Interface
	Expert User Interface
	Backend Code
	Submission of your Language Pack

	Develop Code for Z-Way™
	Z-Way™ software structure overview
	Z-Way™ APIs Quick Reference
	Z-Wave Device API
	JavaScript API (JS API)
	Virtual Device API
	Comparison

	The Z-Wave Device (JSON) API in detail
	The data model
	Timing behavior of Z-Wave data
	Executing Commands

	C-Library API and a general view on the Z-Way™ file structure
	Files in the /zway folder
	The use of the C-Library

	The JavaScript Engine
	The JavaScript Core Interpreter and the integration of the Z-Wave function
	Z-Way™ extensions to the JavaScript Core
	HTTP Access
	XML parser
	Cryptographic functions
	Sockets functions
	WebSockets functions
	Other JavaScript Extensions
	Debugging JavaScript code

	The virtual device concept (vDev)
	Names and Ids
	Device Type
	Access to Virtual Devices
	Virtual Device Usage / Commands
	Virtual Device Usage / Values
	How to create your own virtual devices
	Binding to metric changes

	The event bus
	Emitting events
	Catching (binding to) events
	Notification and Severity

	Modules (for users called 'Apps')
	Module.json
	index.js
	Available Core Modules

	Special topics for Developers
	Authentication
	How to write own Apps for Z-Way™
	module.js
	Schema
	The file index.js

	Write you own Device Description Files
	Extending EnOcean

	CE Declarations
	User Interface Fundamentals - Slides
	Z-Way™ Data Model Reference
	Data
	JS object zway
	controller
	Devices
	Device
	Instances
	CommandClass

	Command Class Reference
	Command Class Basic (0x20/32)
	Command Class Wakeup (0x84/132)
	Command Class NoOperation (0x00/0)
	Command Class Battery (0x80/128)
	Command Class ManufacturerSpecific (0x72/114)
	Command Class Proprietary (0x88/136)
	Command Class Configuration (0x70/112)
	Command Class SensorBinary (0x30/48)
	Command Class Association (0x85/133)
	Command Class Meter (0x32/50)
	Command Class Meter Pulse (0x35/53)
	Command Class SensorMultilevel (0x31/49)
	Command Class Sensor Configuration (0x9E/158)
	Command Class SwitchAll (0x27/39)
	Command Class SwitchBinary (0x25/37)
	Command Class SwitchMultilevel (0x26/38)
	Command Class MultiChannelAssociation (0x8E/142)
	Command Class MultiChannel (0x60/96)
	Command Class Node Naming (0x77/119)
	Command Class Thermostat SetPoint (0x43/67)
	Command Class Thermostat Mode (0x40/64)
	Command Class Thermostat Fan Mode (0x44/68)
	Command Class Thermostat Fan State (0x45/69)
	Command Class Thermostat Operating State (0x42/66)
	Command Class Alarm Sensor (0x9C/156)
	Command Class Door Lock (0x62/98)
	Command Class Door Lock Logging (0x4C/76)
	Command Class User Code (0x63/99)
	Command Class Time (0x8A/138)
	Command Class Time Parameters (0x8B/139)
	Command Class Clock (0x81/129)
	Command Class Scene Activation (0x2B/43)
	Command Class Scene Controller Conf (0x2D/45)
	Command Class Scene Actuator Conf (0x2C/44)
	Command Class Indicator (0x87/135)
	Command Class Protection (0x75/117)
	Command Class Schedule Entry Lock (0x4E/78)
	Command Class Climate Control Schedule (0x46/70)
	Command Class MeterTableMonitor (0x3D/61)
	Command Class Alarm (0x71/113)
	Command Class PowerLevel (0x73/115)
	Command Class Z-Wave Plus Info (0x5E/94)
	Command Class Firmware Update (0x7A/122)
	Command Class Association Group Information (0x59/89)
	Command Class SwitchColor (0x33/51)
	Command Class BarrierOperator (0x66/102)
	Command Class SimpleAVControl (0x94/148)
	Command Class Security (0x98/152)
	Command Class CRC16 (0x56/86)
	Command Class MultiCmd (0x8F/143)
	Command Class Supervision (0x6C/108)
	Command Class Application Status (0x22/34)
	Command Class Version (0x86/134)
	Command Class DeviceResetLocally (0x5A/90)
	Command Class Central Scene (0x5B/91)

	Function Class Reference
	List of supported EnOcean devices
	NodOn
	Thermokon
	Hubbel
	AWAG
	Hoppe
	Schneider Elektrik
	PEHA
	Eltako
	EnOcean GmbH

